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HIGHLIGHTS

1.	 A class of solvent-free covalent organic framework (COF) single-ion conductors (Li-COF@P) has been designed via 
ion–dipole interaction as opposed to traditional ion–ion interaction, promoting ion dissociation and Li+ migration through 
directional ionic channels.

2.	 The Li-COF@P enabled long cycle life (88.3% after 2000 cycles) in all-solid-state Li organic batteries (ASSLOBs) 
under ambient operating conditions, which outperformed those of previously reported ASSOLBs.

3.	 This Li-COF@P strategy holds promise as a viable alternative to the currently prevalent inorganic solid electrolytes.

ABSTRACT  Single-ion conductors based on covalent organic 
frameworks (COFs) have garnered attention as a potential alter-
native to currently prevalent inorganic ion conductors owing to 
their structural uniqueness and chemical versatility. However, the 
sluggish Li+ conduction has hindered their practical applications. 
Here, we present a class of solvent-free COF single-ion conductors 
(Li-COF@P) based on weak ion–dipole interaction as opposed to 
traditional strong ion–ion interaction. The ion (Li+ from the COF)–
dipole (oxygen from poly(ethylene glycol) diacrylate embedded in 
the COF pores) interaction in the Li-COF@P promotes ion disso-
ciation and Li+ migration via directional ionic channels. Driven by 
this single-ion transport behavior, the Li-COF@P enables revers-
ible Li plating/stripping on Li-metal electrodes and stable cycling 
performance (88.3% after 2000 cycles) in organic batteries (Li 
metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone (Me2BBQ) cathode) under ambient operating conditions, highlighting the electrochemi-
cal viability of the Li-COF@P for all-solid-state organic batteries.
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1  Introduction

Ion conductors play a pivotal role in determining the redox 
reaction kinetics of electrochemical energy storage systems 
[1–3]. This significance has catalyzed the exploration of 
advanced ion conductors that afford high ionic conductivity 
and electrochemical stability with electrode materials. Despite 
the widespread use of commercial liquid electrolytes in lith-
ium (Li)-ion batteries (LIBs) [4, 5], the presence of freely 
mobile anions and organic solvents in the electrolytes tends to 
cause inhomogeneous ion flux and undesirable side reactions 
with electrode materials, resulting in the performance deg-
radation and safety failure of the batteries [6, 7]. Enormous 
efforts have been devoted to address these issues with a focus 
on single Li+ conductors for all-solid state Li batteries [8, 9], 
which have been investigated as a promising candidate for 
post LIBs owing to their high energy density and safety gain.

Previous studies on solid single Li+ conductors have focused 
on the design of immobilized anionic domains, such as inor-
ganic lattices (including oxides and sulfides) and polyanions 
[10, 11]. However, their intrinsically anionic moieties tightly 
bind to Li+ via strong ion–ion attraction. Moreover, these elec-
trolytes often provide random and reticulated pathways for ion 
conduction [10–12]. Recently, a new concept of solid single 
Li+ conductors based on covalent organic frameworks (COFs) 
[13–16] was reported as an attractive alternative owing to their 
one-dimensional (1D) directional ion conduction channels and 
versatile chemical structure [17–29]. Anionic frameworks were 
introduced into most of the previously reported COF ion con-
ductors to provide high cationic transference number (tLi

+) 
[30–33]; however, they have suffered from insufficient ionic 
conductivities and high activation energies for ion conduction 
because of the strong Li+ binding energies caused by the ion 
(Li+)–ion (anionic framework of COF) interaction. In addition 
to this ion transport issue, solid single Li+ conductors should 
fulfill the mechanical requirements to ensure their role as ion-
conducting membranes. However, most COFs are microcrys-
tal-based powders, which hinder their fabrication into practical 
thin and flexible films [17, 34–36].

Here, we report a new COF strategy based on weak 
ion–dipole interaction as opposed to traditional strong 
ion–ion interaction. This chemistry design enables a class 
of solvent-free COF single-ion conductors (denoted as Li-
COF@PX%, where X represents pore volume utilization, 
Fig. 1a, b and Figs. S1, S2) that outperform previously 

reported COF single-ion conductors. The ion–dipole inter-
action in the Li-COF@PX% is regulated by embedding 
polyethylene glycol diacrylate (PEGDA) in the COF pores. 
The oxygen (O) atoms of carbonyl groups in the embedded 
PEGDA allowed an ion–dipole interaction with Li+ (from 
the COF). Considering that the ion–dipole interaction is 
weaker than the ion-ion interaction [37], we suggest that 
the intermolecular interaction of Li+ (ion) with PEGDA 
(dipole) in the Li-COF@PX% could be weaker than those 
of traditional single-ion conductors with negatively charged 
moieties (Nafion with sulfonates, garnet with oxygen sublat-
tices, and others), eventually facilitating the ion dissociation 
and Li+ migration. Consequently, the Li-COF@PX% ena-
bled facile Li+ conduction through the PEGDA-embedded 
1D channels (Fig. 1c, d). Particularly, the Li-COF-2@P75% 
exhibited high Li+ conductivity (σLi

+  = 8.9 × 10–5 S cm–1) 
and Li+ transference number (tLi

+  = 0.95), as well as a low 
activation energy forion conduction (Ea = 0.11 eV), which 
exceeds those of previously reported solid organic single-ion 
conductors based on strong ion–ion interaction. In addition, 
the PEGDA embedded in the COF allowed the formation of 
a self-standing flexible single-ion conductor film (Fig. 1e). 
To explore the practical application for all-solid-state Li 
batteries, the Li-COF-2@P75% was assembled with a Li-
metal anode and a 5,5’-dimethyl-2,2’-bis-p-benzoquinone 
(Me2BBQ) cathode (selected as a model organic electrode 
owing to its high specific capacity and low cost; however, 
it dissolves in liquid electrolytes [38]). The resultant all-
solid-state Li organic batteries (ASSLOBs) exhibited high 
specific capacity (~ 300 mAh gMe2BBQ

−1) and long cycle 
retention (88.3% after 2000 cycles) under ambient operating 
conditions, which outperforms those of previously reported 
ASSLOBs. This result demonstrates that the intrinsic chal-
lenge related to the dissolution of organic electrode materials 
upon contact with liquid electrolytes can be resolved by the 
Li-COF-2@P75%, highlighting its electrochemical viability 
as a promising solid and mechanically compliant single-ion 
conductor platform for ASSLOBs.

2 � Experimental Section

2.1 � Materials

1 , 4 - p h e n y l e n e d i a m i n e - 2 - s u l f o n i c  a c i d , 
1 , 4 - p h e n y l e n e d i a m i n e - 2 , 5 - s u l f o n i c  a c i d , 



Nano-Micro Lett. (2024) 16:265	 Page 3 of 12  265

1,3,5-triformylphloroglucinol, poly(ethylene glycol) 
diacrylate, 1,4-dioxane, mesitylene, acetic acid (HOAc), 
and other chemicals were purchased from Sigma Aldrich, 
Tokyo Chemical Industry Co., Ltd, DAEJUNG Co., Ltd, 
and Yanshen Technology Co., Ltd.

2.2 � Preparation of Li‑COFs and Li‑COF@PX%

2.2.1 � Synthesis of Li‑COF‑1

2,4,6-Triformylphloroglucinol (63.0  mg, 0.3  mmol), 
2,5-diaminobenzenesulfonic acid (84.7 mg, 0.45 mmol), 
1,4-dioxane (1.2 mL), 1,3,5-trimethylbenzene (0.8 mL), 
and acetic acid (6 M 0.6 mL) were added into a Pyrex 
tube. Thereafter, the mixture was flash-frozen under liquid 
nitrogen and degassed through three freeze–pump–thaw 
cycles. Thereafter, the tube was sealed and heated at 

120 °C for 3 days, after which the resulting precipitate was 
collected by filtration and washed with dimethylacetamide 
and acetone. The obtained product was extracted using 
Soxhlet extraction with tetrahydrofuran for 12 h and dried 
under vacuum at 120 ºC overnight (yield: 119.7 mg, 91%). 
The as-synthesized SO3H-COF-1 (200 mg) was suspended 
in lithium acetate solution (5 M, 20 mL) and stirred for 
3 days at room temperature. The resulting powders were 
collected by filtration and washed with deionized water, 
and this experiment was performed for three times. Lastly, 
the Li-COF-1 was washed three times with deionized water 
(50 mL) and acetone (10 mL), and subjected to vacuum 
drying at 120 °C overnight to obtain the Li-COF-1 powders 
(yield: 173.5 mg).

Fig. 1   Chemical structure of a Li-COF and b Li-COF@PX% and conceptual design of their pore functionalization. Li+ transport mechanism 
through the PEGDA-embedded 1D channels in c Li-COF and d Li-COF@PX%. e Schematic illustration of the fabrication process of Li-COF@
PX% as a thin film, in which its photograph and cross-sectional scanning electron microscopy (SEM) image are shown
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2.2.2 � Synthesis of Li‑COF‑2

2,4,6-Triformylphloroglucinol (63.0  mg, 0.3  mmol), 
2,5-diaminobenzene-1,4-disulfonic acid (120.6  mg, 
0.45 mmol), 1,4-dioxane (1.2 mL), 1,3,5-trimethylbenzene 
(0.8  mL), and acetic acid (6  M, 0.6  mL) were added 
into a Pyrex tube, after which the mixture was flash-
frozen under liquid nitrogen and degassed through three 
freeze–pump–thaw cycles. Thereafter, the tube was 
sealed and heated at 120 °C for 3 days, and the resulting 
precipitate was collected by filtration and washed with 
dimethylacetamide and acetone. Subsequently, the product 
was extracted using Soxhlet extraction with tetrahydrofuran 
for 12 h and dried under vacuum at 120 °C overnight (yield: 
147.3  mg, 81%). The obtained SO3H-COF-2 (200  mg) 
was suspended in lithium acetate solution (5 M, 40 mL) 
and stirred for 3 days at room temperature, after which the 
resulting powders were collected by filtration and washed 
with deionized water, and this experiment was performed 
three times. Lastly, the Li-COF-2 was washed three times 
with deionized water (50 mL) and acetone (10 mL), after 
which it was subjected to vacuum drying at 120 °C overnight 
to obtain the Li-COF-2 powders (yield: 169.2 mg).

2.2.3 � Synthesis of Li‑COF@PX%.

The Li-COF was added to a mixture of poly(ethylene 
glycol) diacrylate (PEGDA, Mn = 250) to prepare mixtures 
(Li-COF/PEGDA monomer (with 5  wt% 2-hydroxy-2-
methylpropiophenone (HMPP) as a photoinitiator)). The 
obtained mixtures (Li-COF/PEGDA) were subjected to 
ultrasonication (for 2 h) followed by ball milling (for 0.5 h) 
to achieve a good dispersion state. The infiltration of the 
PEGDA into the pores of Li-COF was performed using a 
low pressure-driven method. Specifically, a predetermined 
amount of PEGDA monomer was loaded into the degassed 
Li-COF, after which the sample was subjected to vacuum 
treatment (0.5 kPa) for 2 h to enable the infiltration of 
PEGDA monomer into the pores of the crystalline COF. The 
mixtures were then exposed to UV irradiation (performed 
using a Hg UV-lamp (Lichtzen) with an irradiation peak 
intensity of approximately 2000 mW cm−2) for less than 
1  min to allow the crosslinking of PEGDA monomer, 
followed by thermal annealing at 80  °C to obtain the 
Li-COF@PX% Thereafter, the sample was punched into 

discs (Φ = 13 mm). The dried thin film was pressed into 
a solid electrolyte film using a uniaxial hydraulic press 
(Hefei Kejing Materials Technology Co., Ltd.) at a pressure 
of 220 MPa at 120  °C for 1 h. The maximum PEGDA 
content in the Li-COF-1@P100% calculated using the 
material information (density of PEGDA (1.12 g cm−3) and 
pore volume of Li-COF-1 (0.29 cm3 g−1) was 32%. The 
Li-COFs@PX% samples were synthesized using the same 
process except the different loading amounts of PEGDA 
polymer.

3 � Results and Discussion

3.1 � Structural Characterizations

Li-COF-1 and Li-COF-2 were fabricated using a two-step 
synthesis procedure, which is schematically illustrated in 
(Figs. S1–S2). A major difference in the chemical structure 
of Li-COF-1 and Li-COF-2 is the number of Li+. The 
Li-COF-2 was designed to have twice the number of Li+ 
compared to that of Li-COF-1. To synthesize Li-COF-1 
and Li-COF-2, first, SO3HCOF-1 and SO3H-COF-2 were 
synthesized using a solvothermal reaction. Thereafter, 
Li-COF-1 and Li-COF-2 were prepared via a cation 
exchange reaction between the obtained SO3H-COF and Li 
acetate for three times. The Li-COF-1 and Li-COF-2 were 
characterized using Fourier transform infrared.

(FT-IR) spectroscopy, 13Carbon magic angle spin solid-
state nuclear magnetic resonance (NMR) spectroscopy, 
powder X-ray diffraction (PXRD), field emission scanning 
electron microscopy (FE-SEM), and energy dispersive X-ray 
spectroscopy (EDS) mapping analyses (Figs. S3–S7).

The porosities of the Li-COF-1 and Li-COF-2 were 
measured using nitrogen sorption isotherms at 77 K (Fig. S8a, 
b). The Brunauer–Emmett–Teller (BET) surface areas of 
Li-COF-1 and Li-COF-2 were 343 and 95 m2 g−1, respectively, 
and their pore volumes were 0.29 and 0.21  cm3  g−1, 
respectively. The pore size distributions of Li-COF-1 and 
Li-COF-2 were centered at 1.2 nm (inset of Fig. S8a, b). 
The crystalline structures of Li-COF-1 and Li-COF-2 were 
confirmed using PXRD analysis. A prominent signal was 
observed in the PXRD pattern of Li-COF-1 at 4.60°, and 
other weak peaks were observed at 7.78°, 14.08°, and 26.42° 
(Fig. S9a, red), which were assigned to the (100), (110), (020), 
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and (001) diffractions, respectively. Similarly, the diffraction 
peaks of Li-COF-2 were observed at 4.72°, 7.80°, 14.22°, and 
26.52° (Fig. S10a, red), corresponding to the (100), (110), 
(020), and (001) facets, respectively. The experimental PXRD 
results of Li-COF-1 and Li-COF-2 were in good agreement 
with the simulated AA stacking patterns (Figs. S9a–S10a, 
green). In contrast, the simulated AB-staggered mode 
of Li-COF-1 and Li-COF-2 was inconsistent with the 
experimental results (Figs. S9a–S10a, purple). Furthermore, a 
unit cell structure was confirmed for both Li-COF-1 (Fig. S9b) 
and Li-COF-2 (Fig. S10b).

Next, self-standing pellets of Li-COF (≥ 200 μm) with 
interparticle voids were prepared using a cold-pressing 
method. In addition, thin films (thickness ~ 30  μm) of 
Li-COF@PX% were prepared without using processing 
solvents as follows: the PEGDA monomer was embedded 
into the pores of the degassed Li-COF by vacuum-assisted 
infiltration [29]. The resulting Li-COF was then exposed 
to UV irradiation, followed by thermal annealing at 80 ℃ 
to obtain the Li-COF@PX% (Fig. S11). The dried samples 
were pressed into a Li-COF@PX% thin film using a uniaxial 

hydraulic press at 220 MPa of pressure for 1 h at 120 °C. Based 
on the material information (density of PEGDA (1.12 g cm−3) 
and pore volume of Li-COF (see also the Methods Details) 
[25], the calculated maximum PEGDA content in Li-COF-1 
and Li-COF-2 was 32% and 24%, respectively. The presence 
of the elastic PPEGDA endowed the Li-COF-2@PX% with 
mechanical flexibility and manufacturing scalability owing 
to the compliant PEGDA in the channel of the Li-COF 
(Fig. 1e). To obtain detailed information on the structure, 
porosity, and crystallinity of Li-COFs@PX%, the thin films 
were converted into powders using a simple grinding method. 
Compared to PPEGDA, strong peaks related to CH2 bonds (2870 
and 1189 cm−1) and C–O bonds (1721 cm−1) were observed 
in the FT-IR spectra of Li-COF@PX% powders (Fig. S12). 
With an increase in the PPEGDA content, the relative intensity 
of the signals in the FT-IR spectra increased. In addition, a 
downshift of the C–O bond observed in the PXRD spectra 
of Li-COFs@PX% powders compared to the pristine PPEGDA 
exhibited the interactions between the O atoms of PPEGDA 
and Li-COF. After loading PPEGDA, the nitrogen uptake of 
Li-COF@PX% decreased, confirming the incorporation of 

Fig. 2   Electrochemical impedance spectroscopy (EIS) profiles of a Li-COF-1, b Li-COF-1@P75%, c Li-COF-2, and d Li-COF-2@P75% meas-
ured at different temperatures (from 298 to 363 K). e Arrhenius plots for the ionic conductivity of Li-COF-1, Li-COF-1@P75%, Li-COF-2, and 
Li-COF-2@P75%. f Comparison of the Li+ conductivity of Li-COF-2@P75% to those of the previously reported single-ion conducting COFs
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PPEGDA into Li-COF@P100%. Additionally, the BET surface 
area of Li-COF@P100% reduced to less than 10 m2 g−1 and the 
pore volume was less than 0.01 cm3 g−1 (Fig. S13). The PXRD 
patterns of the Li-COFs@PX% powders after the impregnation 
with PPEGDA showed high crystallinity (Fig. S14), indicating 
that the Li-COFs@PX% samples were successfully synthesized.

3.2 � Electrochemical Properties and Mechanism

The ionic conductivity of the fabricated Li-COF and Li-
COF@PX% was evaluated at different temperatures (from 
298 to 363 K) using electrochemical impedance spectros-
copy (EIS) analysis (Fig. 2a–e and Figs. S15, S16). In the 
absence of additional Li salts or organic solvents, the Li-
COF-1 exhibited an ionic conductivity of 2.7 × 10−5 S cm−1 
at room temperature (Fig. 2a). After the incorporation of 
PPEGDA into Li-COF-1, the ionic conductivities of Li-
COF-1@P25%, Li-COF-1@P50%, and Li-COF-1@P75% 
increased to 3.6 × 10−5, 4.1 × 10−5, and 5.1 × 10−5 S cm−1, 
respectively (Fig. 2b, Fig. S15, and Table S1). After incor-
poration into the pore channel, the oxygen-rich groups 
of PPEGDA enhanced Li+ transport owing to the weak ion 
(Li+)–dipole interactions, thereby facilitating the disso-
ciation of the ion − counter anion (mobile Li+ and anionic 

channels) interaction and fast Li+ migration in the anionic 
nanochannel. However, when the PPEGDA content was higher 
than the pore volume of Li-COF-1, the ionic conductivities 
of Li-COF@P100% and Li-COF@P125% slightly decreased 
to 2.3 × 10−5 and 1.8 × 10−5 S cm−1, respectively (Fig. S15 
and Table S1). This decrease in the ionic conductivity was 
attributed to the decrease in the available Li+ content caused 
by the relatively larger amount of the PEGDA (Table S1). 
Under optimal conditions, a similar phenomenon was 
observed in the Li-COF-2 and Li-COF-2@PX%, and the 
highest ionic conductivity (8.9 × 10−5 S cm−1) was achieved 
by Li-COF-2@P75% (Fig. 2d), which was almost twice that 
of Li-COF-2 (4.9 × 10−5 S cm−1, Fig. 2c). This value out-
performs those of previously reported COF-based single-
ion conductors and other organic conductors (Fig. 2f and 
Table S2) [30–33, 39, 40].

The Arrhenius plot shows a proportional increase in the 
logarithmic ionic conductivity with increasing temperature 
(Figs. 2a–d, S15 and S16). The Ea values of Li-COF and 
Li-COF@PX% were obtained from their Arrhenius plots 
(Figs. 2e, S17 and S18). The lowest Ea value (0.11 eV) was 
observed for Li-COF-2@P75% (Fig. 2e), which is one of the 
lowest values provided by COF based single-ion conductors 

Fig. 3   7Li MAS NMR spectra of a Li-COF and b Li-COF@P75%. c Dissociation energy of Li-COF-2 and Li-COF-2@PX%. d Theoretical eluci-
dation of Li+ migration behavior within the pore with corresponding energy diagrams. Theoretical elucidation of the Li+ migration behavior of e 
Li-COF-2 and f Li-COF-2@PX% (The initial, intermediate, and final states are abbreviated as IS, IM, and FS, respectively)
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and other organic conductors reported to date (Table S1–S3) 
[30–33, 39, 40].

To demonstrate the single Li+ conduction behavior of Li-
COF and Li-COF@PX%, their tLi

+ was examined at 298 K 
using a potentiostatic polarization method [39–42]. The tLi

+ 
values of Li-COF-1@P75% and Li-COF-2@P75% were 0.93 
and 0.95, respectively, which are higher than those of Li-
COF-1 and Li-COF-2 (Figs. S19, S20, and Table S1). The 
tLi

+ value of Li-COF-2@P75% is significantly higher than 
those of the previously reported solid-state porous crys-
talline ion conductors (Table S2 and Fig. 2f). It should be 
noted that the Li+ conductance, rather than the Li+ conduc-
tivity, has a more significant influence on the electrochemi-
cal performance of all-solid-state Li batteries. Compared 
to the thick (200 μm) Li-COF-2 (2.9 mS), the thin (30 μm) 
Li-COF-2@P75% exhibited ionic conductance (39.5 mS, in 
Fig. S21). Furthermore, the ionic conductance of the thin 

Li-COF-2@P75% was higher than that of previously reported 
700 μm-thick inorganic Li6PS5Cl0.5Br0.5 pellet (29 mS) [43].

The local chemical environment and molecular dynam-
ics of Li+ in Li-COF and Li-COF@P75% were investigated 
using solid state 7Li NMR (Fig. 3a, b). A broad signal was 
observed in the 7Li NMR spectra of Li-COF-1 and Li-
COF-2, indicating the sluggish Li+ conduction in the pores 
of Li-COF. In contrast, Li-COF-1@P75% and Li-COF-2@
P75% exhibited a narrower width [30, 42, 43] and an upfield 
shift [44, 45] in the 7Li spectra, indicating the prevalence of 
freely mobile Li+. In addition, the shift in the spectra of the 
Li-COF-1@P75% and Li-COF-2@P75% was more pronounced 
than those of Li-COF-1 and Li-COF-2. This difference in the 
chemical shift was attributed to the weak ion–dipole interac-
tion between Li+ and the oxygen of the PEGDA. The weak 
ion–dipole interaction contributed to the enhancement of Li+ 
migration in the anionic channel of COFs.

Fig. 4   Electrochemical compatibility with Li-metal anodes. a Galvanostatic Li plating/stripping profile of the Li||Li symmetric cell contain-
ing Li-COF-1, Li-COF-1@P75%, Li-COF-2, and Li-COF-2@P75% at a current density of 0.05 mA cm−2 and areal capacity of 0.25 mAh cm−2. b 
Change in the RInt of the cell during the cycling test. c FE-SEM images of the Li-metal anode surface of Li-COF-2@P75% and Li-COF-2 after the 
cycling test (100 h)
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The Li+ transport phenomena in the Li-COF-2 and Li-
COF-2@PX% were theoretically elucidated by conducting 
density functional theory (DFT) calculations. The per-
pendicular pathway is an effective route for Li+ transport 
to achieve the lower migration barriers (Em) [30, 33, 45]. 
Next, the dissociation energy and migration barriers of the 
Li-COF-2 model were investigated. After embedding the 
PEGDA in the COF pores, the dissociation energy of Li sul-
fonate decreased from – 5.32 to – 6.03 eV (Figs. 3c and S22), 
indicating that the oxygen atoms were beneficial in promot-
ing Li dissociation via ion–dipole interaction. In addition, 
the initial, intermediate, and final states (IS, IM1, IM2, and 
FS) of Li+ were investigated (Fig. 3d–f). The results revealed 
that Li-COF-2 exhibited a high Em of 8.22 kcal mol−1 in 
the initial state, whereas Li-COF-2@PX% showed a lower 
Em (5.31 kcal mol−1). When the PEGDA was fused into the 
anionic channel of the Li-COF, the Li+ migration barriers 
were lowered, resulting in fast Li+ transport.

The applicability of Li-COF and Li-COF@P75% as a 
new solid-state electrolyte for Li-metal anodes was inves-
tigated using the Li||Li symmetric cell configuration (inset 

of Fig. 4a). Galvanostatic Li plating/stripping on the Li-
metal anodes was performed repeatedly at a current den-
sity of 0.05 mA cm−2 for 5 h per cycle. The symmetric cell 
of Li-COF@P75% exhibited stable and reliable Li plating/
stripping behavior for over 500 h without any significant 
increase and an irreversible fluctuation in the overpotential 
compared to that of the Li-COF (Fig. 3a). This superior 
cyclability was verified by monitoring the change in the 
interfacial resistance (RInt) of the cell as a function of the 
cycling time (Fig. 4b and Table S4). The increase in RInt 
was retarded during the cycling, indicating the good inter-
facial stability of Li-COF-2@P75% with Li-metal anodes. 
This result was confirmed by the clean and smooth sur-
face of the Li-metal anodes after the cycling test (Fig. 4c). 
Additionally, random Li deposition was hardly observed, 
indicating that the Li-COF-2@P75% enabled uniform Li+ 
flux to the Li-metal anodes. In addition, the PXRD analy-
sis revealed that the ordered structure of Li-COF-2@P75% 
was not disrupted after the cycling test (Fig. S23). These 
results demonstrate the promising potential of Li-COF-2@
P75% as a solvent-free, organic single Li+ conductor, which 

Fig. 5   Electrochemical performance of the ASSLOBs. a Voltage profiles and b cycling performance of the ASSLOBs (Me2BBQ‖Li assembled 
with the Li-COF-2@P75% (vs. liquid electrolyte) at a charge/discharge current density of 0.2/0.2 C and voltage range of 1.8–3.4 V at 298 K. c 
Specific capacity and dissolution of the Me2BBQ cathode as a function of cycle number (Li-COF-2@P75% vs. liquid electrolyte). d Rate capabil-
ity of the ASSLOBs with the Li-COF-2@P75%, in which the discharge current densities were varied from 0.2 to 5.0 C at a fixed charge current 
density of 0.2 C. e Comparison of the Li-COF-2@P75% and the previously reported organic electrolytes in terms of specific capacity of organic 
cathode materials (x-axis), cycle number (y-axis), operating temperature (heatmap), and cycle retention (diameter). The detailed values assigned 
to each circle were described in Table S5
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enables stable electrochemical compatibility with the Li 
metal anodes.

The Li-COF-2@P75% was combined with a Li-metal 
anode and a Me2BBQ cathode to explore its practical appli-
cation in ASSLOBs. The Me2BBQ is known to provide a 
lower cost and high specific capacity based on a three-elec-
tron redox reaction (332 mAh g−1), in comparison to con-
ventional metal oxide-based cathode active materials [38]. 
However, the Me2BBQ suffers from undesirable dissolution 
in liquid electrolytes (Fig. S24), resulting in poor cycling 
performance [39]. We expect that the Li-COF-2@P75% can 
be proposed as a promising solid Li+ conductor to solve to 
this problem. The ASSLOB assembled with the Me2BBQ 
exhibited a reversible capacity of ~ 300 mAh g−1 at the first 
cycle in the voltage range of 1.8–3.4 V (vs. Li/Li+) at room 
temperature (Fig. 5a).

Notably, the ASSLOB with the Me2BBQ showed stable 
capacity retention with cycling (88.3% after 2000 cycles) 
whereas the control cell with a liquid electrolyte showed 
rapid capacity degradation after only 50 cycles (Fig. 5b). 
This result was verified by examining the relationship 
between the capacity and Me2BBQ dissolution as a 
function of the cycle number (Figs.  5c and S56). The 
ASSLOB with the Me2BBQ achieved the decent discharge 
rate capability at various current densities ranging from 
0.2 to 5.0 C (Fig. 5d). In addition, the ASSLOB with the 
Me2BBQ still exhibited stable cycling performance (84.2% 
after 300 cycles) at ambient operating conditions (i.e., room 
temperature without external pressure) under a high current 
density of 5.0 C (Fig. S26). The superior electrochemical 
performance of the ASSLOB (this study) over the 
previously reported ASSLOBs was highlighted through a 
comparative analysis encompassing the specific capacity of 
organic cathode materials (x-axis), cycle number (y-axis), 
operating temperature (heatmap), and cycle retention 
(diameter) (Fig. 5e and Table S5) [46–58]. The significantly 
improved cyclability was observed at the ASSLOB (this 
study), whereas most of the previous works on ASSLOBs 
suffered from poor cycling retention (< 500 cycles) along 
with fast capacity fading rate due to the dissolution of 
organic electrode materials into liquid electrolytes. This 
result demonstrates the viability of Li-COF-2@P75% as a 
promising solid Li+ conductor suitable for high-capacity 
organic electrode materials.

4 � Conclusions

In summary, we presented the Li-COF@P as a solvent-
free, mechanically compliant organic single-ion conductor 
based on weak ion–dipole interaction, in contrast to 
conventional organic single-ion conductors based on 
strong ion–ion interaction. The weak ion (Li+ from the 
COF)–dipole (oxygen from the PEGDA embedded in the 
COF pores) interaction promoted the ion dissociation 
and Li+ migration, thereby facilitating Li+ conduction 
through the functionalized 1D channels. The Li-COF-2@
P75% exhibited facile Li+ conduction behavior in the 
absence of Li salts and organic solvents, outperforming 
those of the previously reported solid organic single-ion 
conductors based on ion–ion interaction. When combined 
with the Me2BBQ cathode, the Li-COF-2@P75% enabled 
the resulting full cell to achieve a stable cyclability (88.3% 
after 2000 cycles) under ambient operating conditions. The 
Li-COF@P strategy based on the ion–dipole interaction 
holds promise as a new solid electrolyte platform for all-
solid-state batteries and opens a new perspective in the 
design of COF single-ion conductors as a viable alternative 
to the currently prevalent inorganic solid electrolytes.
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