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HIGHLIGHTS

e Cellulose elementary fibrils (CEFs), the most fundamental unit of cellulose, are proposed as a deagglomerated binder for high-mass-

loading Li battery electrodes.

e The CEFs, due to their increased surface area and anionic charge density, promote uniform dispersion with carbon additives and

mitigate interfacial side reactions in electrodes.

e The CEF-based overlithiated layered oxide cathode exhibits a high areal-mass-loading (50 mg cm™) and a high specific energy den-
sity (445.4 Wh kg™") of a cell.
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molecular hydrogen bonding by the treatment with a proton acceptor

and a hydrotropic agent. This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density, thus
promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes. Consequently, a
homogeneous redox reaction is achieved throughout the electrodes. The resulting CEF-based cathode (overlithiated layered oxide (OLO)
is chosen as a benchmark electrode active material) exhibits a high areal-mass-loading (50 mg cm™2, equivalent to an areal capacity of
12.5 mAh cm™) and a high specific energy density (445.4 Wh kg™!) of a cell, which far exceeds those of previously reported OLO cathodes.
This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to

achieve with conventional synthetic polymer binders.
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1 Introduction

The ongoing surge in demand for smart portable electronics,
electric vehicles, and grid-scale energy storage systems has
catalyzed the relentless pursuit of high-energy—density lith-
ium (Li) batteries with electrochemical sustainability [1-3].
Many previous studies implemented to reach this goal have
concentrated on synthesizing and engineering new electrode
active materials [4, 5]. Along with these material-driven
approaches, the design of high-mass-loading electrodes
has recently emerged as a practical strategy owing to its
simplicity and scalability in realizing high-energy—density
cells [6-8].

However, a longstanding challenge with the high-mass-
loading electrodes has been the difficulty in achieving suffi-
cient interconnectivity of their ion/electron conduction path-
ways [9-12]. The random and nonuniform intermolecular
interactions between electrode components, including car-
bon conductive additives and polymer binders, often lead to
their poor dispersion in electrode slurries [13—17]. This issue
becomes more pronounced with the incorporation of car-
bon nanotubes (CNTs), which tend to aggregate due to their
strong van der Waals interactions, thus limiting their effec-
tiveness in forming conductive networks [18]. To address
these challenges, both physical methods (e.g., high-shear
mixing, three-roll milling) and chemical methods (e.g., sur-
face functionalization, polymer grafting) have been explored
[19, 20]. However, these approaches often cause structural
damage to the components, require additional dispersants,
and complicate fabrication processes, thereby hindering
their practical application [21-23]. Consequently, this issue
hinders the formation of bi-continuous ion/electron conduc-
tion networks across the electrode thickness, resulting in a
loss of electrochemical performance and energy densities in
the resulting cells [24, 25].

To achieve well-developed ion/electron conduction path-
ways in the electrodes, it is necessary to inhibit electrode
components’ aggregation while enhancing intermolecular
interactions between heterogeneous components [26-28].
Previous approaches have primarily centered on the chemi-
cal modification of electrode binders [29-32], including
the amphiphilic bottlebrush polymers to enhance compo-
nent dispersion, elastic and composite binders to improve
mechanical stability, and polymer-wrapped SWCNTs to
establish conductive networks. However, these efforts have
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often failed to address the complexity that arises from the
interactions of multi-components. Furthermore, the intricate
multiscaling of binder architecture, coupled with its inter-
actions with carbon conductive additives, has often been
overlooked, thereby constraining the dispersion state of the
electrode components.

Here, we introduce cellulose elementary fibrils (CEFs) as
a new binder to realize high-mass-loading electrodes capa-
ble of facilitating the formation of bi-continuous ion/elec-
tron conduction networks. CEFs are the finest hierarchical
cellulose units with an elementary deagglomerated fibrous
configuration. Cellulose nanofibers are irreversibly disin-
tegrated into CEFs by modulating inter- and intramolecu-
lar hydrogen bonding between cellulose fibers through the
use of a proton-accepting additive and a hydrotropic agent
(Fig. 1a) [33-36]. The CEFs, with their increased surface
area and anionic surface charge density, enable uniform
dispersion with single-walled carbon nanotubes (SWC-
NTs) via one-dimensional (1D) n-x interaction [37], while
retaining their elementary fibrous structure after electrode
fabrication. This facilitates the formation of well-connected
electron networks throughout the electrode and improves
electrolyte accessibility to the electrode active materials.
To demonstrate feasibility of the CEF binder, high specific
capacity (~250 mAh g!) overlithiated layered oxide (OLO)
[38, 39] was selected as a model electrode active material.
Driven by this structural uniqueness of the electrode enabled
by the CEF binder (Fig. 1b), a uniform redox reaction was
observed throughout the high-mass-loading OLO cathode.
Consequently, the OLO cathode with the CEF binder exhib-
ited the high areal-mass-loading (50 mg cm™, equivalent
to 12.5 mAh cm™), allowing the resulting full cell (OLO
cathodellLi metal anode) to deliver a high specific energy
density (445.4 Wh kg™!). These electrochemical metrics far
exceeded those achievable with previously reported OLO
cathodes based on synthetic polymer binders.

2 Experimental Section

2.1 Materials

NaOH (98%), urea (99.5%), ethylene carbonate (EC, 99%),
dimethyl carbonate (DMC, 99%), and tris(trimethylsilyl)

phosphite (TMSP, 95%) were purchased from Sigma-
Aldrich. Li foil (thickness =100 pm) was purchased from

https://doi.org/10.1007/s40820-024-01642-8
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Fig. 1 a Hierarchical structure of natural wood-derived cellulose. b Comparison of dispersion state and ion/electron transport behavior: conven-
tional OLO cathode versus cellulose elementary fibril (CEF)-based OLO cathode

Honjo Chemicals. OLO (0.49Li,Mn0;0.51LiNi, 3,Co ,
4Mn, 30,, average diameter ~5 pm), PVDF, and carbon
black powders were provided by LG Energy Solution.
Pristine CNF and TEMPO-oxidized CNF suspensions
were prepared by the National Institute of Forest Science
(Korea). SWCNTSs (average diameter ~ 1.5 nm) were pur-
chased from Tuball.

) SHANGHAI JIAO TONG UNIVERSITY PRESS

2.2 Fabrication of CEFs

The TEMPO-oxidized CNF suspensions (2 wt%) were dis-
persed into 7 wt% NaOH and 12 wt% urea aqueous solution,
precooled to — 10 °C, and stirred for 5 min to obtain a cel-
lulose elementary fibrils (CEFs)-containing aqueous suspen-
sion. The obtained suspension was dialyzed with a dialysis
tube to remove NaOH and urea.

@ Springer
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2.3 Characterization of CEFs and Electrode Slurries

The FT-IR spectra of the electrolytes were recorded with
an FT-IR spectrometer (670, Varian). To characterize the
deagglomerated state of the CEFs in the aqueous suspen-
sion, we conducted transmission electron microscopy (TEM,
JEM-2100F, JEOL) analyses. The Raman analysis was con-
ducted with a 514 nm laser (LabRAM HR Evolution Vis-
ible_NIR, HORIBA).

2.4 Structural and Physicochemical Characterization
of CEF Cathodes

The surface and cross-sectional morphologies of the OLO
cathodes were investigated via field emission secondary
electron microscopy (FE-SEM, S-4800, Hitachi). The elec-
trical resistivities were measured via a four-point probe tech-
nique (CMT-SR1000N, Advanced Instrument Tech). The
chemical change of the cathode surface after the cycling
test was analyzed by utilizing TOF-SIMS (ION TOF) with a
Bi;>" gun (25 keV, 1 pA). The ICP-MS (ELAN DRC-2, Per-
kin Elmer) analysis was conducted to quantitatively estimate
the metal (Ni, Co, and Mn) deposited on the Li metal anode
after the cycling test. EBAC measurements were performed
with an EBIC system (Point Electronic GmbH, Germany)
in the FE-SEM (Teneo VS, Thermo Fisher Scientific, USA).
A spot size of 14 was utilized at an accelerated voltage of
15 kV.

2.5 Fabrication of Electrodes and Cells and Their
Electrochemical Characterizations

For the fabrication of a CEF-based OLO cathode, SWC-
NTs were mixed with CEF binder at a composition ratio
of SWCNT/CEF=5/5 (w/w) by sonication in water for
10 min, without any dispersion additives. OLO particles
were dispersed in a composition ratio of OLO/SWCNT/
CEF =90/5/5 w/w/w. The slurry mixture underwent
vacuum-assisted filtration and freeze-drying. A self-
standing CEF-based OLO cathode was obtained after
being roll-pressed at room temperature and vacuum-dried
at 120 °C/12 h. A control OLO cathode was fabricated
by casting a slurry mixture of OLO/carbon conductive
additives (carbon black or SWCNTs)/PVDF (=90/5/5,

© The authors

w/w/w) in NMP onto an Al foil, followed by roll-pressing
at room temperature and vacuum-drying at 120 °C/12 h.
The same dispersion method used for the CEF-based
OLO cathode slurry was applied to the control OLO
cathode slurry. The ion conductivity of electrodes was
estimated by electrochemical impedance spectroscopy
(EIS) measurement and analysis of the symmetric cells
(electrodelseparatorlelectrode) at a frequency ranging from
1072 to 10° Hz and an applied amplitude of 10 mV uti-
lizing potentiostat/galvanostat (VSP classic, Bio-Logic).
The electrochemical performance of OLO cathodes was
characterized using a 2032-type coin cell (composed of
OLO cathode (areal-mass-loading =18.4, 22, 30, and
50 mg cm~?)IILi metal anode (thickness =100 pm)). A
liquid electrolyte of 1 M LiPF; in EC/DMC = 1/1 (v/v)
with 0.5 wt% tris(trimethylsilyl) phosphite (TMSP) was
utilized. The galvanostatic intermittent titration technique
(GITT) analysis was conducted with an interruption time
between each pulse of 1 h. The cell performance was
investigated with a cycle tester (PNE Solution) in a cham-
ber set at 25 °C at various charge/discharge conditions.

3 Results and Discussion

3.1 Structural Analysis of the CEFs: Focusing
on Intermolecular Hydrogen Bonding

The hierarchical fibrous architecture of cellulose is
depicted in Fig. 2a. The cellulose nanofibers (denoted as
CNF(-OH)), characterized by diameters ranging from 5
to 30 nm, comprise several elementary fibrils [40]. The
strong hydrogen bonding and dense packing between the
molecular chains of the CNFs often lead to the formation
of larger agglomerates [41]. A common approach imple-
mented to address this issue is the utilization of TEMPO
(2,2,6,6-tetramethylpiperidine-1-oxyl) modification to
exfoliate the cellulose fibers and increase the concentra-
tion of carboxyl groups on their surfaces, thereby generat-
ing carboxylated cellulose nanofibers (CNF(-COQ")) [42].

To produce CEFs, our strategy involves the modulation
of intermolecular hydrogen bonding in cellulose, attempting
to maximize cellulose’s surface area while maintaining its
inherent fibrous morphology without agglomeration. The
hydrogen bonding in cellulose is categorized into two types

https://doi.org/10.1007/s40820-024-01642-8
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Fig. 2 Structural analysis of the CEFs: focusing on intermolecular hydrogen bonding. a Schematic of the hierarchical structure and fibrillation
mechanism of cellulose. The CEFs were produced from cellulose nanofibers via the carboxylation and the alkali/urea treatment. b Intermolecu-
lar hydrogen bonding energies calculated from FT-IR spectra of the cellulose aqueous suspensions. ¢ Zeta potential of the cellulose aqueous sus-
pensions. d TEM images of CNF(—-OH), CNF(-COOQO"), and CEF(-COO")

[43]: intramolecular and intermolecular, with the latter play-
ing a vital role in mitigating the fibril agglomeration. The
CNF(-COO") was treated with NaOH (as a proton-accepting
additive) and urea (as a hydrotropic agent). This treatment
regulated the intermolecular hydrogen bonding, thus ena-
bling the irreversible and deagglomeration of nanofibers into
elementary fibrils to form CEF(—-COOQO"). Specifically, the
NaOH hydrates and free water disrupted the hydrogen bond-
ing networks between the cellulose molecules, facilitating
their disintegration. In addition, the urea hydrates formed

SHANGHAI JIAO TONG UNIVERSITY PRESS

the hydration layers adjacent to the surface of cellulose mol-
ecules [43, 44], which can effectively prevent re-agglomera-
tion of the cellulose molecules.

The intermolecular interactions between different cellu-
lose fibrils (CNFs with hydroxyl groups (CNF(—OH)), CNFs
with carboxylate groups (CNF(—-COQ")), and CEFs with car-
boxylate groups (CEF(—COQ"))) were characterized via Fou-
rier transform infrared (FT-IR) spectroscopy, with a focus
on hydrogen bonding spectral region (3000-3700 cm™).
The spectra of the CEF(—~COO") exhibited a downfield

@ Springer
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shift (~3238 cm™) relative to those of the CNF(-OH) and
CNF(-COOQO"), indicating a reduction in the intermolecular
interactions (Fig. S1) [45].

Employing these FT-IR results, the intermolecular hydro-
gen bonding energies were estimated quantitatively with
Eq. (1) [45, 46]:

DO_D

1
Enk) = X = (D
where Ey; is the hydrogen bonding energy (kJ), v, is the
standard frequency of free OH groups (3600 cm™), v is
the frequency of bound —OH groups (cm™), and k is a con-
stant (k"' =262.5 kJ). The Ey of CEF(-COQO") was calcu-
lated to be 26.39 kJ, which is lower than that of CNF(-OH)
(31.64 kJ) and CNF(-COQO") (30.19 kJ). This result reveals
a weakening of the hydrogen bonding networks in the
CEFs (Fig. 2b). Despite the insignificant difference in the
anionic characteristics of the CNF(—COO") (54 mV) and
CEF(-COO") (59 mV) (Fig. 2c), measured by zeta potential
analysis, the lower E}; of the CEF(—-COQO") demonstrates the
critical role of the proton-accepting additive (NaOH) and the
hydrotropic agent (urea) in restructuring the intermolecular
hydrogen bonding network of cellulose fibers, thereby facili-
tating the elementary fibrillation.

The high-resolution transmission electron microscopy
(HR-TEM) images (Fig. 2d) revealed that the CNF(—OH) has
diameters in the hundreds of nanometers with a nonuniform,
agglomerated morphology due to uncontrolled intermolecu-
lar hydrogen bonding. The CNF(—-COQO") had smaller diam-
eters because of their surface charges, but some agglomera-
tion between the fibrils remained evident. In contrast, the
CEF(-COO") exhibited diameters of only a few nanometers,
indicating the weakened intermolecular hydrogen bonding.
Consequently, a uniform and deagglomerated fibrous mor-
phology was achieved at the elementary level.

3.2 Effect of the CEF(-COQO") Binders
on the Dispersion Stability of the Cathode Slurry

Cellulose is an amphiphilic polymer with a hydrophobic glu-
cose backbone and hydrophilic hydroxyl side chains [47].
This structural uniqueness may facilitate uniform mixing
with carbon nanotubes in aqueous suspensions. However,
cellulose fibrils are susceptible to agglomeration if their
hydrogen bonding networks are not precisely regulated. This
unwanted agglomeration reduces the effective surface area

© The authors

needed for interaction with carbon conductive additives, hin-
dering the formation of a uniform dispersion state (Fig. 3a).

High-resolution Raman spectroscopy was employed to
characterize the interactions between cellulose fibrils and
SWCNTs in an aqueous suspension (Fig. 3b), in which the
same mixing protocol was applied to all suspensions exam-
ined herein. The shift in the G-band peak represents van der
Waals interactions between the CNTs, indicating the degree
of self-aggregation of SWCNTs [48—50]. The Raman spec-
tra of the SWCNTSs/CEF(-COQO") showed a blue shift from
1573 (pristine SWCNTSs) to 1592 cm™!, revealing that the
effective - stacking interactions between the SWCNTs and
CEF(-COOQO") led to the de-aggregation of the SWCNTSs. In
contrast, relatively insignificant shifts were detected with
the CNF(~OH) (1574 cm™) and CNF(—COO") (1579 cm™),
indicating their limited interactions with the SWCNTs. This
is due to the uncontrolled agglomeration of the CNFs, which
is insufficient to provide the effective surface area available
for dispersion of the SWCNTs.

The dispersion stability of the SWCNT suspensions incor-
porating different cellulose fibrils was analyzed via ultra-
violet—visible (UV—vis) spectroscopy after centrifugation
(Fig. 3c). The absorbance intensity of the spectra increased
in the order of CNF(-OH), CNF(-COQ"), and CEF(-COQ").
This result indicates that the SWCNT suspensions with
CNF(—-OH) and CNF(-COQO") binders showed faster sedi-
mentation kinetics, revealing the formation of relatively larger
SWCNT aggregates [21]. Consequently, these poorly dispersed
suspensions yielded the clear upper layers after centrifugation.
The upper layers of the SWCNT suspensions with CNF(—-OH)
and CNF(-COQ") binder showed lower absorbance intensi-
ties due to a reduced fraction of individually dispersed SWC-
NTs. In contrast, the higher absorbance intensity in the upper
layer of the SWCNT suspension with CEF(-COQ") binder
reflected a well-dispersed state of the SWCNTs. These results
were confirmed by visual comparison of the aqueous sus-
pensions stored for 12 h after mechanical mixing for 10 min
(Fig. 3d). In this static sedimentation test, the suspension with
the CEF(—~COO™) demonstrated a superior dispersion state,
devoid of agglomeration, whereas the suspensions with the
CNF(—COO") and CNF(-OH) showed severe aggregation of
SWCNTs adhering to the bottle walls. The microstructure of
these suspensions was further elucidated via micro-computed
tomography (Micro-CT) analysis (Fig. 3e). The uniform dis-
persion of the SWCNTSs was observed in the suspension with

https://doi.org/10.1007/s40820-024-01642-8
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Fig. 3 Effect of the CEF(—-COO") binders on dispersion stability of the cathode slurry. a Schematic of cellulose (CNF vs. CEF) —SWCNT
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SWCNTs. ¢ UV-vis spectra of the cellulose aqueous suspensions containing SWCNTs. d Photograph of the cellulose aqueous suspensions con-
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the CEF(—-COQ"), whereas the aggregates of the particle mix-
tures were noticeable in the suspensions with the CNF(—-OH)
and CNF(—COQ"). This result underscores the viable role of
the CEF binder in achieving a well-dispersed cathode slurry.

3.3 Electrochemical Performance of the OLO Cathodes

To investigate the effect of the dispersion state of the car-
bon conductive additives and binders on the structural integ-
rity of OLO cathodes, three different cathodes with con-
ventional polyvinylidene fluoride (PVDF), CNF(-COQ"),

SHANGHAI JIAO TONG UNIVERSITY PRESS

and CEF(—COOQO") binders were fabricated at a composition
ratio of OLO/binder/carbon conductive additives (carbon
black powders for the PVDF binder, and SWCNTs for the
CNF(-COO") and CEF(-COOQ") binders) =90/5/5 (w/w/w).
The OLO cathodes with CNF(-COQO") and CEF(-COO")
binders were fabricated using a vacuum-assisted filtration
process, yielding a self-standing and flexible electrode (Fig.
S2). The control PVDF cathode with similar areal-mass-
loading was fabricated via a typical slurry-casting method.
The surface scanning electron microscopy (SEM) images of
the obtained electrodes (Figs. 4a and S3) showed the aggre-
gation of the binder/carbon conductive additives mixtures

@ Springer
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in the OLO cathodes with the PVDF and CNF (-COO")
binders. In contrast, the OLO cathode with the CEF(—COQO")
exhibited the uniformly dispersed CEF/SWCNTs mixtures
owing to the effective intermolecular n-w interaction, facili-
tating the formation of continuous electronic conduction
networks. This result was verified by measuring the elec-
tronic conductivities of the OLO cathodes using the four-
point probe analysis (Fig. 4b). The OLO cathode with the
CEF (-COQ") (referred to as CEF cathode) exhibited a
higher electronic conductivity (7.4 S cm™), whereas the
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lower electronic conductivities were observed at the OLO
cathode with the CNF(-COQ") (referred to as CNF cath-
ode) (5.2 S cm™!) and the OLO cathode with the PVDF
(0.92 S cm™).

The spatial distribution of electron conduction channels
in the OLO electrodes was investigated using electron beam-
absorbed current (EBAC) analysis (Fig. 4c). The probed
current signal enables the mapping of current pathways
(electron conduction channels), identifying the regions of
high electrical resistance [51]. The EBAC images of the
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electrode cross-sections (Fig. 4d) exhibited that the current
signal is influenced by the electrical properties of the elec-
trode components such as OLO, carbon conductive addi-
tives, and polymer binders. The EBAC image of the PVDF
cathode displayed the pronounced localization of electron
conduction channels, with severe heterogeneity attributed
to electrically isolated regions resulting from the random
aggregation of the binder/carbon black powders mixtures.
In contrast, the CEF cathode exhibited uniformly distributed
electron conduction channels owing to the homogeneous
dispersion of SWCNTSs, which was enhanced by the opti-
mized intermolecular interactions between the CEF binders
and SWCNTs. Meanwhile, the EBAC analysis of the CNF
cathode revealed the formation of relatively inhomogene-
ous electron conduction pathways (Fig. S4a), although its
overall electronic conductivity appeared similar to that of
the CEF cathode. Consequently, the CNF cathode showed
the unsatisfactory electrochemical performance compared
to the CEF cathode (Fig. S4b—d), further underscoring the
importance of elementary fibrillation in achieving uniform
dispersion of SWCNTs.

In addition, the homogeneous distribution of electrode
components can facilitate ion transport in the electrodes.
To investigate the ion transport phenomena in the CEF
cathode, electrochemical impedance spectroscopy (EIS)
measurement was conducted with a blocking symmet-
ric cell (electrodellelectrode) at 0% state of charge (SOC)
(Fig. S5). The projection of a slope (observed in the low-
frequency region of the complex impedance plot) to a real
axis, defined as the ionic resistance (R;,,)/3, reflects the
ionic resistance inside the cathodes [52]. The CEF cathode
exhibited a lower R,,/3 (~ 1.22 Q cm?) than the PVDF cath-
ode (~5.84 Q cm?). This lower ionic resistance of the CEF
cathode was attributed to the formation of well-connected
ion conduction channels resulting from the homogeneous
dispersion of SWCNTSs and CEF binder within the cathode.
The structural difference between the CEF and PVDF cath-
odes is previously investigated in Fig. 4a, b. Compared to the
PVDF cathode, which showed the nonuniform distribution
of the electrode components (resulting in a poorly developed
porous structure that will be filled with electrolytes) along
the through-thickness direction, the CEF cathode exhibited
the homogeneous distribution of electrode components,
beneficially contributing to the formation of highly inter-
connected ion conduction channels in the through-thickness
direction.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

The charge/discharge rate capabilities of the CEF and
PVDF cathodes, both with the same areal-mass-loading
of 22 mg cm™2, were evaluated by varying the charge/dis-
charge current rates from 0.1 C (=0.55 mA cm™2)t0 0.5 C
(=2.75 mA cm~2). OLO active materials have a high theo-
retical capacity of 250 mAh g, ', but their redox reaction
kinetics is hindered by low electronic conductivity [38].
The PVDF cathode failed to realize the theoretical capacity
of OLO, mainly because of the poorly developed electron
conduction channels (shown in Fig. 4d), resulting in a low
discharge capacity of 228 mAh gqo; "' at 0.1C (Fig. 4e).
With increasing current rates, the discharge capacity of the
PVDF cathode decreased significantly to 178 mAh gOLO’l
because of the increased ohmic polarization. To ensure a
fair comparison, a PVDF cathode containing the same
SWCNTs as the CEF-based OLO cathode was prepared
as another control sample. The resulting PVDF cathode
exhibited severe cracking after solvent drying, indicating
unwanted SWCNT aggregation. Further work is required
to address the dispersion issues associated with SWCNTs
in the preparation of PVDF-based OLO cathodes. Despite
this structural instability (Fig. S6), we carefully selected
cathode samples with minimal cracking and then evaluated
their electrochemical performance. The PVDF cathode
with SWCNTs demonstrated very low discharge capac-
ity and poor cycle life, which was further corroborated by
significant aggregation of electrode components due to
their poor dispersibility (Fig. S7). This finding highlights
the importance of achieving a uniform dispersion state for
electrochemically reliable electrodes, particularly when
incorporating high-aspect-ratio conductive additives such
as SWCNTs. In contrast, the CEF cathode provided a high
specific discharge capacity of 250 mAh gq; ! at 0.1C
under this high areal-mass-loading of 22 mg cm™2, which
was close to the theoretical capacity (~250 mAh go; 7))
of OLO (Fig. 4f). The galvanostatic intermittent titration
technique (GITT) analysis performed during charging/dis-
charging of the cells revealed that the CEF cathode effec-
tively alleviated the rise in cell polarization upon repeated
current stimuli (applied at 0.1 C (=0.55 mA cm™?) and
interruption time between the pulses of 1 h), wherein the
obtained internal cell resistances (R;,.n,) Were presented as
a function of SOC and depth of discharge (DOD) (Fig. 4g).
Additionally, the CEF cathode exhibited higher Li* diffu-
sion coefficient (4.23 x 10~ cm? s7!) than the PVDF cathode
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(3.29%x 107 cm? s7!), indicating the facile Li* transport in
the CEF cathode (Fig. S8 and Table S1).

3.4 Superior Cycle Life of the CEF Cathode over
the PVDF Cathode

A Li metal full cell (OLO cathode (areal-mass-load-
ing = 18.4 mg cm™)IILi metal anode (thickness = 100 pm),
a liquid electrolyte of 1 M LiPF, in EC/DMC=1/1 (v/v)
with a 0.5 wt% tris(trimethylsilyl) phosphite (TMSP) addi-
tive) with the PVDF cathode showed only 15% capacity
retention after 60 cycles at a charge/discharge current rate
of 0.2C/0.2C (=0.92 mA cm™%/0.92 mA cm™2) (Fig. 5a,
b). Meanwhile, the fluctuation of the coulombic efficiency
was observed, which could stem from the use of OLO
active materials. It is known that OLO active materials are
promising due to their high theoretical capacity and oper-
ating voltage. However, they often show unstable and low

coulombic efficiency, mainly due to the severe transition
metal dissolution and structural degradation, even at low
areal-mass-loadings [53, 54]. Dissolved transition metal
ions (including Mn?*, Co?*, and Ni**) cause unwanted pas-
sivation of Li metal anodes, thereby accelerating cell deg-
radation [55-57]. In contrast, the CEF cathode exhibited
higher capacity retention during cycling (80% after 100
cycles). The improved cycling performance of the CEF
cathode was verified by examining the change in the cell
resistance after the cycling test. The CEF cathode signifi-
cantly suppressed the cell resistance growth compared to
the PVDF cathode (Fig. 5c).

During the cycling test, transition metal ions such as
Ni**, Co**, and Mn?" tend to leach from the OLO cathode
materials into electrolytes [58]. These dissolved transition
metal ions subsequently react with hydrofluoric acid (HF,
typically generated in the LiPF,-based liquid electrolyte),
forming unwanted byproducts on the cathode surface. They
also migrate through separator membranes and deposit on
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Fig. 5 Cycling performance of the cells (OLO cathode (areal-mass-loading = 18.4 mg cm™)IILi metal anode (100 pm)). a Cycling retention of
the cells at charge/discharge current rates of 0.2C/0.2C (=0.92 mA cm2/0.92 mA cm™2) under a voltage range of 2.0-4.7 V. b Charge/discharge
voltage profiles of the cells at 1st and 100th cycle. ¢ EIS profiles of the cells after 1st cycle (inset) and 100 cycles. d TOF-SIMS mapping images
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anodes via ICP-MS analysis
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Li metal anodes as passivation layers [59, 60]. The time-
of-flight secondary ion mass spectrometry (TOF-SIMS)
mapping images of the cycled cathodes indicated that the
formation of MnF, byproducts was mitigated on the CEF
cathode compared to the PVDF cathode (Fig. 5d). To better
understand this advantageous effect of the CEF cathode, a
model study was conducted, in which the CEF binder was
immersed in carbonate (EC/DMC=1/1 (v/v))-based elec-
trolytes containing Mn>* as well as Li* and PF,~ (Fig. S9).
These solutions were stored at 45 °C for 5 days to expedite
possible side reactions. The simultaneous presence of Mn?>*
and PF," in the electrolytes accelerated the parasitic reac-
tions, as evidenced by a visible color change (Fig. S9b). In
contrast, color change was not observed in the electrolyte
containing the CEF, demonstrating that the CEF was effec-
tive in suppressing Mn>*-induced side reactions. In addition,
the inductively coupled plasma mass spectroscopy (ICP-
MS) analysis confirmed that the contamination of Li metal
anodes by the deposition of metallic Ni, Co, and Mn was sig-
nificantly reduced by the CEF cathode more than the PVDF
cathode (Fig. 5e). Moreover, the Li metal anode paired
with the CNF cathode was more contaminated than the Li
metal anode coupled with the CEF cathode, underscoring
the importance of reducing cellulose fibril agglomeration
(Fig. S10). These results indicate that the CEF binder, driven
by its anionic (COQO") feature that enables intermolecular
electrostatic attraction, played a viable role in chelating the
transition metal ions dissolved from the OLO, thereby poten-
tially suppressing further Mn?* dissolution according to the
Le Chatelier’s principle [61]. Consequently, the cycle life of
the resulting cell can be extended.

3.5 Contribution of the CEF Binder
to High-Mass-Loading OLO Cathodes

Realizing the theoretical capacities of electrode active
materials is critical to developing high-energy—density
cells and is particularly challenging for high-mass-loading
electrodes. Despite its high theoretical capacity, OLO has
encountered limitations in high-mass-loading applications
due to structural instability and low electronic conductivity
(~107 S cm™) [62]. CEF cathodes were fabricated with
varying mass loadings of 20, 30, and 50 mg cm™2. The cross-
sectional SEM image of the CEF cathode (284 pm, corre-
sponding to 50 mg cm~2) depicted a uniform distribution of
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the cathode components in the through-thickness direction
(Fig. 6a). The effect of the CEF cathodes on the electro-
chemical performance of the full cells was investigated at a
charge/discharge current rate of 0.05C/0.1C.

The CEF cathodes exhibited higher areal discharge
capacities than the PVDF cathodes over the entire
range of areal-mass-loadings examined herein (Figs. 6b
andS11). Moreover, the specific capacity of OLO in the
CEF cathodes remained almost constant at 250 mAh
gOLO_l together with stable cycling performance even at
the high areal-mass-loadings of 30 and 50 mg cm~2 (Fig.
S12). In contrast, the PVDF cathodes exhibited a consid-
erable decrease in the specific capacity with increasing
areal-mass-loadings (Fig. 6¢). This result indicates that
the CEF cathodes, driven by their well-established ion/
electron conduction channels, enabled the full realiza-
tion of the theoretical specific capacity of OLO, which
can eventually contribute to the achievement of high cell
energy densities [63]. Furthermore, the CEF cathode-con-
taining cells allowed a continuous increase in the specific
energy, increasing the areal capacity. In comparison, the
PVDF cathode-containing cells reached a peak specific
energy at an areal capacity of 7.5 mAh cm™, and there
was a decline in specific energy as the areal capacity

was further increased to 12.5 mAh cm™

owing to the
insufficient utilization of the specific capacity of OLO
(Fig. 6d). Here, the specific energies of the cells were
estimated without including packaging substances (see
Table S2 for calculation details), in which the absence
of heavy metallic foil current collectors is an additional
contribution to the higher specific energies of the cells
[64—67]. In particular, the CEF cathode-containing cell
achieved a specific energy of 445.4 Wh kg~! with an areal
capacity of 12.5 mAh cm™2, far exceeding those of previ-
ously reported high-mass-loading OLO cells (Fig. 6d and
Table S3). The CEF cathode with an areal-mass-loading
of 50 mg cm™? demonstrated stable charge/discharge
behavior while delivering the theoretical capacity of OLO
(~250 mAh g~!) in pouch-type configuration, highlight-
ing its potential for large-scale applications (Fig. S13)
[68]. In addition, the CEF cathodes exhibited a higher
discharge rate performance than the PVDF cathodes
(Fig. 6e), verifying the formation of well-interconnected
ion/electron conduction networks inside the high-mass-
loading (50 mg cm~2) OLO cathodes.
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The CEF binder was combined with LiFePO, (LFP) fibril structure of the CEFs enhanced the electrolyte access
active materials to explore its potential application to  to the OLO in the cathode. This architectural uniqueness
other electrode materials. A high areal-mass-loading  promoted the formation of well-developed ion/electron
(~20 mg cm™2) LFP cathode with the CEF binder exhibited ~ conduction networks, ensuring the homogeneous redox

a stable cycle life and superior capacity retention com-  reaction throughout the cathode. The anionic surface
pared to the PVDF cathode (Fig. 6f), demonstrating the  charge of the CEF binder effectively chelated the transition
viable role and versatility of the CEF binder. metal ions dissolved from the OLO via the intermolecular

electrostatic attraction, thus stabilizing both the OLO cath-
4 Conclusions ode and Li metal anode. Consequently, the CEF cathode
achieved a high areal-mass-loading level (50 mg cm™2)
In summary, CEFs were presented as an elementary while maintaining the theoretical specific capacity of OLO
over a wide range of mass loadings. Moreover, the CEF
binder enabled the OLO cathode-containing Li metal full

cell to achieve a specific energy density of 445.4 Whkg™!,

deagglomerated binder for high-mass-loading electrodes.
The CEFs were prepared by modulating the intermolecular

hydrogen bonding of cellulose via treatment with NaOH

(proton acceptor) and urea (hydrotropic agent). Owing to outperforming those of previously reported OLO cath-

the finest cellulose unit, the CEFs allowed an increase in odes based on synthetic polymer binders. This CEF strat-

the surface area and charge density, facilitating uniform egy provides a new insight into binder design for high-

mixing with the SWCNTs. Furthermore, the elemental mass-loading electrodes and holds promise as a versatile
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platform technology applicable to various cathode active
materials.
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