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by four-dimensional tracking of charge
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Fastdiffusion of charge carriers is crucial for efficient charge collectionin
perovskite solar cells. While lateral transient photoluminescence microscopies
have been popularly used to characterize charge diffusionin perovskites,
there exists adiscrepancy between low diffusion coefficients measured and
near-unity charge collection efficiencies achieved in practical solar cells.
Here, we reveal hidden microscopic dynamics in halide perovskites through
four-dimensional (directions.x, yand z and time ¢) tracking of charge carriers
by characterizing out-of-plane diffusion of charge carriers. By combining this
approach with confocal microscapy, we discover astrong local heterogeneity
ofvertical charge diffusivities in a three-dimensional perovskite film, arising
fromthe difference between intragrain and intergrain diffusion. We visualize
thatmost charge carriers are efficiently transported through the direct
intragrain pathways or viaindirect detours through nearby areas with fast
diffusion. The observed anisotropy and heterogeneity of charge carrier
diffusionin perovskites rationalize their high performance as showninreal
devices. Ourwork also foresees that further control of polycrystal growth will
enable solar cells with micrometres-thick perovskites to achieve both long
optical pathlength and efficient charge collection simultaneously.

Thediffusion of charge carriers playsan important roleinsolarcells,to  diffusive motion ofcharges. Several groups have used thistechnique to
transport holesand electrons across photoactive layers. Among various  quantify free charge carrier diffusivities (D,) of three-dimensional (3D)
techniques for characterizing diffusivity'”, photoluminescence (PL)  perovskite films and reported those to be on the order of 10 cm®s™*
microscopy is a popular and straightforward method to visualize the  (refs. **?), one to two orders lower than those for perovskite single

'Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK. *Rowland Institute, Harvard University, Cambridge, MA, USA.
#3chaol of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea. *Global Frontier Center for Multiscale Energy
Systems, Seoul National University, Seoul, Republic of Korea, “Department of Mechanical Engineering, Secul National University, Seoul, Republic

of Korea, *Department of Chemical Enginesring and Biotechnology, University of Cambridge, Cambridge, UK. 'Graduate Institute of Photonics and
Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan. %Graduate School of Energy and Environment
(KU-KIST Green School), Korea University, Seoul, Republic of Korea. - e-mail: ncgll@cam.ac.uk

Mature Materlals | Volume 21| December 2022 | 1388-1395 1388
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The role of photon recycling in perovskite
light-emitting diodes

Changsoon Cho(® 124 Baodan Zhao'3, Gregory D. Tainter®, Jung-Yong Lee® 2 Richard H. Friend(® ",
Dawei D]®1'3*, Felix Deschler@® 15+ & Neil C. Greenham "

Perovskite light-emitting diodes have recently broken the 20% barrier for external quantum
efficiency. These values cannot be explained with classical models for optical cutcoupling.
Here, we analyse the role of photon recycling (PR) in assisting light extraction from per-
ovskite light-emitting diodes. Spatially-resolved photoluminescence and electroluminescence
measurements combined with optical modelling show that repetitive re-absorption and re-
emission of photons trapped in substrate and waveguide modes significantly enhance light
extraction when the radiation efficiency is sufficiently high. In this manner, PR can contribute
more than 70% to the overall emission, in agreement with recently-reported high efficiencies.
While an outcoupling efficiency of 100% is theoretically possible with PR, parasitic absorp-
tion losses due to absorption from the electrodes are shown to limit practical efficiencies in
current device architectures. To overcome the present limits, we propose a future config-
uration with a reduced injection electrode area to drive the efficiency toward 100%.

TCavendish Laboratory, Department of Physics, University of Cambridge, J.), Thomson Avenue, Cambridge CB3 OHE, UK. 2 5chool of Electrical Enginesring,
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