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Block polymers comprising covalently joined polymeric segments represent a class of nanostructured,
multicomponent polymeric materials. Polymerization-induced microphase separation (PIMS) is an in-
triguing subset that allows for simultaneous nanostructuring during block polymer synthesis. In con-
trast to polymerization-induced self-assembly (PISA), useful for the spontaneous formation of block poly-
mer micelles, PIMS is well suited to fabricating monolithic block polymer materials by turning a whole
polymerization mixture into a nanostructured solid. With the in situ cross-linking feature, PIMS offers
a facile route to nanostructured block polymer thermosets in combination with various polymerization
techniques, from emulsion polymerization to 3D printing. This review aims to provide a comprehensive
overview and practical guide on PIMS by covering its historical background and mechanistic aspects and
also highlighting representative material classes and applicable polymerization techniques.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Polymerization-induced structuring

Block polymers are hybrid macromolecules consisting of chem-
ically distinct polymer segments joined by covalent bonds. The co-
valent junction prevents the constituting blocks from separating
apart even under immiscible conditions [1]. For example, A-b-B
diblock polymers prefer to populate at the interface of A- and B-
selective media and behave as interfacial stabilizers by reducing in-
terfacial tension [2,3]. In an A-selective solvent, the diblock copoly-
mers self-assemble into micelles by segregation of the B block [4].
When the constituting blocks are immiscible in neat, they undergo
microphase separation to form periodic nanostructures composed
of discrete A and B microdomains. Their morphologies and length
scales depend on the molar mass and the composition of block
polymers, which can be adjusted in the synthesis step by employ-
ing controlled polymerization techniques [5-9]. The size of most
block polymer-based structures falls into the range of 1 - 1000 nm.

* This MS is for October 2023, Volume 145 - Rising Stars. Please include the spe-
cial logo on the first page of this review article to indicate that this paper is part of
the special Issue 'Rising Stars 2023'.

* Corresponding author.
E-mail address: seomyungeun@kaist.ac.kr (M. Seo).

https://doi.org/10.1016/j.progpolymsci.2023.101738
0079-6700/© 2023 Elsevier B.V. All rights reserved.

With synthetic freedom of block combination, block polymers offer
a unique, versatile, and controlled route to polymeric nanomateri-
als and find a wide range of applications, including thermoplastic
elastomers [10], drug delivery vehicles [11], lithographic templates
[12], and membranes [13,14].

Over the past decade, interest in block polymers has focused
on polymerization-induced structuring strategies that dynamically
couple the synthesis and nanostructuring steps. Traditionally, block
polymers have been synthesized by consecutive controlled poly-
merizations, purified, and then processed into the desired macro-
scopic shape accompanying nanostructuring, often including addi-
tional steps such as annealing [15]. In situ nanostructuring during
the block polymer formation can reduce the number of steps to
the final materials. More importantly, new exciting features, such
as access to new self-assembling phases, can emerge in the process
of turning a homogeneous polymerization mixture into nanostruc-
tured materials by polymerization as the nanostructure evolution
follows a complex pathway in the competition between polymer-
ization and ordering kinetics.

There have been many excellent reviews on polymerization-
induced self-assembly (PISA) utilizing the spontaneous formation
of block polymer micelles during chain extension in a selective sol-
vent (see [16-21] for representative examples). However, no com-
prehensive review exists on polymerization-induced microphase
separation (PIMS) since its first report in 2012 [22], where neat
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Fig. 1. Concept of PIMS. Compared to traditional block polymer systems where the synthesis and processing steps are decoupled, block polymer formation in the neat
polymerization mixture produces nanostructured materials in one step via the PIMS mechanism. Some accessible product shapes and representative applications are given

as examples.

polymerization in the absence of a solvent (or with a minimal
amount of a solvent required to ensure the homogeneity of the
mixture) converts the whole polymerization mixture into a solid
monolith. With the in situ cross-linking feature, PIMS offers a facile
route to nanostructured block polymer thermosets and has found
numerous applications, from structural polymer electrolytes to ro-
bust nanoporous polymers as outlined in Fig. 1. Recent progress
exploits the compatibility of the PIMS process with various poly-
merization and processing techniques, such as emulsion polymer-
ization and 3D printing, showcasing the synthesis of more com-
plex and hierarchically structured materials across several length
scales.

In this contribution, we aim to provide a comprehensive
overview and also a practical guide on the PIMS process to facil-
itate its use by the wider polymer community. The Review is or-
ganized as follows. In the first section, we present a historical ac-
count of PIMS to portray how polymerization-induced structuring
strategies have evolved by adopting block polymers. Then we dis-
cuss the mechanistic aspects of the PIMS process compared to the
temperature-driven microphase separation behavior of presynthe-
sized block polymers and identify factors influencing the nanos-
tructure evolution. The following sections will cover representative
material classes based on the PIMS process and applicable poly-
merization techniques with a thorough literature survey. We sum-
marize the key features of PIMS and propose future challenges in
the final section.

1.2. Historical background

Blending immiscible polymers has been widely investigated to
produce composite materials with enhanced properties [23]. For
example, dispersing rubbery polymer domains in the glassy poly-
mer matrix can enhance toughness and impact resistance [24].
However, controlling the phase separation dynamics to optimize
the morphology with restraining domain size is often challenging,
especially when the polymer pair is strongly incompatible.

Polymerization-induced phase separation (PIPS) circumvents
the polymer miscibility issue by starting with a mixture of a poly-
mer (“modifier” or “diluent”) with monomers [17]. A homogeneous
solution can be obtained relatively readily as the degree of poly-
merization N in the monomer state equals 1. Phase separation oc-
curs during polymerization mainly because increasing N reduces
the entropic contribution to the free energy of mixing. Vitrifica-

tion or in situ cross-linking by including a cross-linking agent in
the solution can prevent coarsening of the domains and arrest the
emerging morphology [25]. Toughened epoxy and polyurethane
resins and polymer-dispersed liquid crystals are well-known exam-
ples produced by PIPS [26-32]. Low molar mass compounds have
also been used as the porogenic diluent to induce phase separa-
tion with the growing polymer network and create macroporous
void upon removal [33-43].

Block copolymers containing the growing polymer-compatible
and incompatible blocks have been developed as modifiers to pro-
duce microphase-separated morphologies in the resulting mate-
rials. For example, Hillmyer et al. utilized poly(ethylene oxide)-
b-poly(ethyl ethylene) (PEO-b-PEE) for the synthesis of modified
epoxy resins [44,45]. As the epoxy-miscible PEO chains surrounded
the epoxy-incompatible PEE domain and stabilized it against coars-
ening, ordered arrays of the PEE core embedded in the epoxy ma-
trix could be obtained. Meng et al. showed a microphase separated
morphology could emerge from a disordered mixture of poly(e-
caprolactone)-b-polybutadiene-b-poly(e-caprolactone) with epoxy
monomers upon curing [46].

The absence of covalent bonds between the presynthesized
polymer and the growing polymer characterizes the PIPS exam-
ples described above. High-impact polystyrene (HIPS) represents
an intriguing example of creating covalent connections between
the preexisting and growing polymer blocks. Radical polymeriza-
tion of styrene in the presence of polybutadiene (PB) dissolved in
styrene grafts PS chains on PB in situ by consuming its double
bonds. Despite not falling into the category of block polymers, the
resulting nonlinear macromolecules effectively stabilize the PS/PB
interface and produce the well-known “salami” morphology of PB
domains dispersed in the continuous PS phase [47].

In 1995, Ryan et al. investigated how nanostructures evolve
when covalent junctions form between polymer segments during
polyurethane synthesis [48,49]. In situ small-angle X-ray scatter-
ing (SAXS) measurements showed that a scattering peak corre-
sponding to the periodicity in the nanometer length scale appeared
above a critical conversion, signaling the onset of microphase sep-
aration. The peak intensity grew and saturated over time, indicat-
ing the resulting multiblock copolymer composed of alternatingly
arranged hard and soft segments induced microphase separation
during the step-growth polymerization. Vitrification of the hard
domain froze the disordered interconnected morphology in the
polyurethane.
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Structure evolution during the block polymer formation via liv-
ing and controlled polymerizations based on the chain growth
mechanism has also been studied [50-55]. In 2006, Hashimoto
et al. used time-resolved small-angle neutron scattering (SANS)
to monitor the anionic polymerization of styrene and isoprene
in a concentrated benzene solution. Rapid consumption of iso-
prene produced clusters of mostly polyisoprene (PI) anions
[56]. Continuous polymerization produced (tapered) PI-b-PS block
copolymers, which induced a transition into the ordered phase
through concentration fluctuation and finally adopted a hexago-
nally packed cylindrical morphology in solution. They coined the
term “polymerization-induced microphase transition” to indicate
that the increasing N drives the system to order, not changes in
temperature or pressure, as in the presynthesized block polymers.
They further investigated a neat polymerization system by utiliz-
ing reversible addition-fragmentation chain transfer (RAFT) poly-
merization. PMMA-macro chain transfer agent (PMMA-CTA) was
dissolved in styrene to make a homogeneous mixture, and styrene
polymerization was again followed by SANS [57]. An order-disorder
transition and more order-order transitions were detected with the
increasing conversion, along with macrophase separation, probably
because of PS homopolymer formation. They also theoretically pre-
dicted that complex non-equilibrium morphologies could emerge
when the polymerization proceeds faster than ordering kinetics
[58].

Around the same time, several groups pursued chain exten-
sion in a selective solvent as modified versions of dispersion and
emulsion polymerizations to synthesize uniform block polymer mi-
celles and latex particles [59-65]. The key feature was to uti-
lize a solvophilic polymer as the first block and extend the chain
with a solvophobic block. In the case of dispersion polymerization,
the solvophobic block was chosen to be miscible in the monomer
state but to segregate over a critical molar mass. Spontaneous
aggregation resulted in the formation of block polymer micelles.
The term “polymerization-induced self-assembly” seems to be first
used around 2012 to describe the process [66]. Depending on the
factors such as the chain mobility of the micellar core, the mi-
celle could undergo morphological transitions as the polymeriza-
tion proceeded with the increasing fraction of the solvophobic
block. Some works included a cross-linker such as divinylbenzene
(DVB) as a co-monomer to synthesize core cross-linked and micro-
gel star polymers [67-70], which also trapped the emergent mor-
phology by in situ cross-linking.

In 2012, Seo and Hillmyer reported neat RAFT copolymeriza-
tion of styrene and DVB in the presence of polylactide (PLA)-CTA
and used the term “PIMS” for the process [22]. Fig. 2 schemat-
ically illustrates the PIMS process compared to PIPS and PISA. A
trithiocarbonate group was installed at the PLA chain end as the
CTA motif and successfully mediated the radical copolymerization.
The P(S-co-DVB) block adopting the branched network topology
grew from the PLA chain end to produce PLA-b-P(S-co-DVB). The
increasing N and the block polymer concentration at the cost of
the monomer consumption by polymerization induced microphase
separation. While the transient disordered bicontinuous morphol-
ogy was arrested at the onset of gelation, the polymerization pro-
ceeded further to nearly complete conversion and resulted in a
solid transparent monolith. A robust nanoporous polymer with
percolating pores supported by the densely cross-linked P(S-co-
DVB) framework could be obtained by PLA etching. Since then, sev-
eral groups have exploited the potential of the PIMS process, par-
ticularly focusing on feasible access to the bicontinuous nanostruc-
ture. Table 1 summarizes polymer combinations for PIMS available
in the literature, along with polymerization methods and applica-
tions.

PISA offers a feasible route to preparing block polymer mi-
celles at high concentrations. Both PIPS and PIMS are suited for
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producing neat polymeric materials. Dispersed and cocontinuous
morphologies at the micrometer length scale can be readily ac-
cessed for immiscible polymer blends via PIPS. PIMS could be more
advantageous if nanoscopic morphologies are desired with length
scale control.

The boundaries between PIMS, PIPS, and PISA are becoming less
clear. For example, adding a homopolymer in the PIMS formulation
can induce a transition from PIMS to PIPS with a gradual increase
in the domain size [71]. A high-molar mass homopolymer additive
can drive PIMS and PIPS simultaneously. Similarly, a small amount
of the selective solvent can be added to the PIMS polymerization
mixture to swell the domain of the first block while retaining the
product’s monolithic feature [72]. The polymerization follows the
PISA mechanism when the polymer domain cannot accommodate
the whole solvent. PISA can exhibit lyotropic phase transitions in
the concentrated solution, for example, from closed-packed spher-
ical to hexagonally-packed cylindrical phases [73].

Examples of polymerization-induced phase transitions in
microphase-separated media have also been reported by Hickey
and co-workers [74-76]. Analogous to HIPS, in situ grafting of PS on
PS-b-PB led to complex phase transitions with increasing styrene
conversion. Besides polymerization, postpolymerization modifica-
tion can induce phase transitions by chemically transforming one
block into another and thus tuning the interaction parameter.
For example, Magenau and co-workers reported that Pd-catalyzed
cross-coupling [77] and thiol-epoxide click reactions [78] can be
used to form block polymer micelles in situ by modifying the
core block. Chen and co-workers reported phase transitions of gly-
copolymer amphiphiles via deacetylation [79,80] and debenzoyla-
tion [81]. These “reaction-induced phase transition” approaches are
anticipated to enrich the toolbox of in situ nanostructuring further.

Finally, we should note that other polymerization method-
ologies can also induce microphase separation at the nanome-
ter length scale. For example, free radical copolymerization of
N,N-dimethylacrylamide (DMA) with acrylate-appended telechelic
polydimethylsiloxane (PDMS) formed covalent junctions between
PDMS and PDMA in situ that led to a cross-linked network con-
sisting of disordered bicontinuous PDMS and PDMA domains [82].
Hayward et al. also developed an approach to creating bicontin-
uous polymer networks. In this “randomly end-linked copolymer
network,” the end groups of two different telechelic polymers are
arbitrarily tied to produce disordered bicontinuous morphologies
over a wide composition range of the constituent network strands
[83-87]. Distinct from PIMS, these approaches offer a route to co-
continuous nanostructures without using controlled polymeriza-
tion techniques.

2. Fundamental aspects of PIMS
2.1. Driving force to order: temperature vs. polymerization

The phase behavior of neat block polymers is governed by the
Flory-Huggins interaction parameter (x ), volume composition (f),
and N. Fig. 3a shows a theoretical phase diagram of an A-b-B di-
block copolymer constructed based on the self-consistent mean-
field theory [88]. The composition f is designated the X-axis and
determines the interfacial curvature of the microphase-separated
morphology. The Y-axis constitutes a product of xgN as the seg-
regation strength. x ag represents the incompatibility between two
blocks and is given in eqn (1).

XAB = (k:T) |:8AB - %(SAA + SBB)i| (1)

where z is the number of neighbors of one repeating unit of poly-
mers, kg is Boltzmann constant, and €ap, €gg, and €xp are interac-
tion energy between A-A, B-B, and A-B per unit molecules, respec-
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Fig. 2. Schematic illustration of PIPS (a), PISA (b), and PIMS (c) processes. (a) PIPS starts with a homogeneous solution of polymer A dissolved in monomer b. Polymerization
converts monomer b into polymer B, resulting in macrophase separation between A and B. A droplet morphology is drawn as an example. (b) In PISA, polymer A carrying
a propagating center at the chain end is dissolved in an A-selective solvent with monomer b. Growing the B chain from the A chain end, incompatible with the solvent,
spontaneously produces block polymer micelles. A spherical morphology is given as an example. (c) PIMS does not require solvent in contrast to PISA. Polymerization
proceeds in a neat polymerization mixture typically containing a cross-linker as a comonomer. The whole mixture is converted into a monolithic solid with a disordered
bicontinuous morphology composed of A and B microdomains at the nanometer length scale. The chain conformation in the final materials is sketched as lines.

tively [1]. As x is inversely proportional to temperature, cooling
a disordered block polymer melt below the order-disorder tran-
sition temperature (Topr) can induce microphase separation for
block polymers with fixed N.

While temperature is typically kept constant in the PIMS pro-
cess, polymerization drives the system to order. The initial poly-
merization mixture can be considered a solution of polymer A in
monomer b. Polymerization produces A-b-B diblock copolymer by
consuming monomer b, which continuously increases N, fg, and
the block polymer concentration (¢) in the solution as a function
of conversion. Assuming xag, Xap and xp, do not vary upon b
polymerization, the polymerizing solution can be described by a
three-dimensional phase diagram composed of f, N, and ¢ axes.
Such a phase diagram is illustrated in Fig. 3b [89]. Note that the
diagram during the polymerization is not symmetric for f because
monomer b should be much more selective to its own polymer B

than A (ie, xa, > Xpp)- Roughly, both increases in N and ¢ fa-
cilitate microphase separation, while changes in f and ¢ allow the
solution to move across various phases during polymerization, as
exemplified in Fig. 3c [90].

The polymerizing solution may not reach thermodynamic equi-
librium during polymerization. This kinetic feature could be more
significant in PIMS than PISA because the much higher viscosity
of the neat polymerization mixture could slow down the chain
dynamics. lida et al. investigated the phase transition behavior
by calculating the free energy of the system by developing a
coarse-grained model based on the Ginzburg-Landau expansion
coupled with random phase approximation (Fig. 3d) [58]. While
fast polymerization essentially yielded a quenched block polymer
melt, the phase transition and the domain growth kinetics could
compete with the slower polymerization. Non-equilibrium mor-
phologies such as inverted cylinders were found when the do-
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Table 1
PIMS formulations reported in the literature and their applications.

Polymerization
Macro-CTA Monomer Cross-linker Additive technique Material Reference
PLA S DVB Bulk Nanoporous polymer [22,107]
PLA S DVB Bulk Nanoporous film [169]
PLA S DVB Bulk (with Nanoporous membrane [170]

impregnated

support)
PLA S DVB Emulsion Semipermeable microcapsule [198]
PLA S DVB Emulsion Micro-/meso-/macroporous polymer [207]
PLA S DVB PLA Bulk Meso-/macroporous polymer [71]
PLA S DVB PEO Bulk Meso-/macroporous polymer [115]
PLA S DVB Acetonitrile Bulk Nanoporous polymer [72]
PLA S MVCLs Bulk Micro-/mesoporous polymer [138,139]
PLA 4-alkyl styrenes DVB Bulk Micro-/mesoporous polymer [137]
PLA VBzCl DVB Bulk Micro-/mesoporous polymer [143]
PLA TMSS, VBzCl DVB Bulk Micro-/mesoporous polymer [109,144]
PLA IBA EGDA Photo Nanoporous film [191]
PLA S DVB Bulk (simultaneous Nanoporous polymer [116]

block

polymerization)
PLA, PI S DVB Bulk Nanoporous polymer [147]
PEO S DVB BMITFSI, LiTFSI Bulk Polymer electrolyte [158]
PEO S DVB BMITESI Bulk Polymer electrolyte [111]
PEO S DVB HEIMTESI Bulk Polymer electrolyte [160]
PEO S DVB LiTFSI + SN Bulk Polymer electrolyte [159]
PEO S DVB Acetonitrile + Bulk Polymer electrolyte [161]

polyoxometalates
PEO mVSZ DVB Bulk Mesoporous SiCN [179]
PEO IBA TMPTA BMITESI Photo 3D-printed polymer electrolyte [217]
POEGMEA IBA TMPTA BMITFSI Photo 3D-printed polymer electrolyte [218]
PCL-b-PVBzCl S DVB Suspension Functionalized nanoporous polymer [177]
PCL-b-PtBA S DVB Suspension Functionalized nanoporous polymer [177]
P4AMCL MMA EGDMA Bulk Photochromic lens [183]
PMMA S DVB CgmimNtf,, C;;mimNtf, Bulk Reference electrode [162]
(saturated with AgCl)

PVBzCl S DVB Bulk Anion-exchange resin [174]
PoSSE S DVB Bulk Cation-exchange resin [174]
PnBA AA EGDA Photo 3D-printed composite resin [214-216]

main growth outspeed order-order transitions. The calculation also
predicted an acceleration in the polymerization rate upon mi-
crophase separation, which was inconsistent with the experimental
results.

Motokawa et al. examined the structure evolution kinetics for
the PMMA-b-PS system mediated by the RAFT polymerization of
styrene-dg [57,91]. First-order polymerization kinetics up to inter-
mediate conversion supported controlled chain growth, at least in
the early stage, while the dispersity of the final polymer was rel-
atively high. In the time-resolved SANS data shown as a function
of the scattering vector g, the initial increase in the scattering in-
tensity with the q~4-dependent profile in the low q regime was
interpreted as macrophase separation due to PS homopolymer for-
mation. The growth of a broad scattering peak was consistent with
the “correlation hole” originating from a diblock polymer in the
disordered state [92]. The appearance of a sharp scattering peak
marked the onset of microphase separation. The order-disorder
transition behavior in the PIMS process is similar to that observed
in the temperature-induced microphase separation, where increas-
ing the segregation strength induces chain stretching and gener-
ates fluctuation in composition near the critical point (Fig. 4a and
b). A body-centered cubic morphology was identified at the end
of polymerization by conventional and ultra SANS analyses (Fig. 4c
and d). In a separate setting targeting high molar mass synthesis,
they observed more order-order transitions into PS-richer phases
with increasing conversion (Fig. 4c). Along with the increase in
the domain spacing (d), the q dependence in the low g regime
shifted from q=* to q~2 over time, suggesting the microphase-

separated structure dominates the scattering behavior in the later
stage (Fig. 4d). In a later study using PMMA-CTA with ultrahigh
molar mass (My = 169 kg mol~1), the authors found microphase-
separated structures with large periodicities in the visible light
range could be produced in the polymerization mixture that re-
flected different wavelengths as a function of conversion [93]. The
PIMS process may be a practical route to block polymer-based pho-
tonic materials by avoiding difficulties associated with the process-
ing of ultrahigh molar mass block polymers [94].

Seo and Hillmyer investigated the PIMS kinetics by copolymer-
izing a cross-linker to trap an intermediate morphology (Fig. 5)
[22]. When styrene and DVB were copolymerized in the presence
of PLA-CTA, the P(S-co-DVB) block started to grow from the PLA
chain end, as evidenced by a gradual shift to higher molar mass
over time in the size exclusion chromatography (SEC) traces. The
appearance of very high molar mass species followed by gelation
indicated cross-linked network formation because of DVB. The re-
maining monomer was continuously consumed after gelation to
yield a solid monolith with >90% yield (Fig. 5b). In situ SAXS
of the polymerization mixture showed the emergence of a broad
scattering peak that retained its position and intensity after sat-
uration (Fig. 5c). The exponential increase in the scattering inten-
sity resembles early-stage spinodal decomposition, characterized as
three-dimensional composition fluctuation into bicontinuous do-
mains, that can be described by the Cahn-Hillard theory (Fig. 5d)
[96]. The presence of a maximum in the intensity growth rate pro-
file as a function of g2 suggested a discrete length scale domi-
nates the structure growth, which coincides to the dimension of



T. Oh, S. Cho, C. Yoo et al.

Progress in Polymer Science 145 (2023) 101738

a 50 C ]
wf :
30F 3
20F .
10 F 3
r disordered ]
0 T T T T T T I T T N A S A Y B W !
0.0 0.2 0.4 0.6 0.8 1.0
f f 1.00 (p
c d
0.0 prpeyegy — T - T 1l T T T I
Disordered L i S ¥~ O disorder
I E A B-cylinder in A-matrix ||
0.2f 7 LT i O A-cylinder in B-matirx
<& inverted network
10 E I TAvEEs Y3 e
0.4} 4 = £ — 2 Ne e
S = — X e %t
£ B
0.6p 4 = I 1 v
1 -
0.8 4
10 \ 0.1 |
0.0 0.2 0.4 0.8 1.0 0.01 0.1 100

f 0.6

1 1
Reaction constant & [1/t,]

Fig. 3. (a) Phase diagram of an A-b-B diblock copolymer melt constructed based on the self-consistent mean-field theory. S: sphere; S¢,: close-packed sphere; C: cylinder; G:
gyroid; Ozo: Fddd; L: lamella [88], Copyright 2012. Reproduced with permission from the American Chemical Society. (b) Imaginary 3D phase diagram illustrating the PIMS
process starting with a polymerization mixture of polymer A in monomer b. Because the monomer b also acts as a solvent, the volume concentration (¢) was added to the
diagram as the x-axis to describe the phase behavior of a block polymer solution according to [89]. The volume fraction of polymer A in the polymerization mixture (N = 1)
is set to 0.3. An arbitrary reaction trajectory is also shown as a dashed line connecting red dots, assuming that the ordering kinetics is fast enough to reach equilibrium
per each monomer addition [89], Copyright 1998. Adapted with permission from the American Chemical Society. (c) Experimentally determined phase diagram of a block
polymer solution as functions of f and ¢. The data of polystyrene-b-polyisoprene (PS-b-PI) in diethyl phthalate at 100 °C is given as an example. The subscript denotes
the polymer block forming the minor phase [90], Copyright 2002. Adapted with permission from the American Chemical Society. (d) Phase transition of the A-b-B diblock
copolymer by chain extension with monomer b as a function of the polymerization reaction constant. A coarse-grained model in 2D space based on the Ginzburg-Landau
expansion coupled with random phase approximation was used for calculation. At the complete conversion, the volume fraction of A is 0.3 [58], Copyright 2008. Reproduced

with permission from the American Chemical Society.

the forming block polymer (Fig. 5e) [97,98]. Overall, the results
support that the block polymer formation in situ drives microphase
separation, but simultaneous cross-linking captures the emergent
morphology into the disordered bicontinuous structure. Further
monomer consumption develops a narrower interface while retain-
ing the morphology and the length scale.

2.2. Factors affecting PIMS

Cross-linker. In the PIMS process, the cross-linker copolymer-
ization provides a means to fix the target morphology sponta-
neously. The disordered bicontinuous structure PIMS can readily
capture with in situ cross-linking has attracted prominent atten-
tion (Fig. 6a). An active domain with three-dimensional connectiv-
ity, responsible for functions such as transport, spares the need for
domain alignment and can be combined with a continuous struc-
tural framework providing integrity. While the bicontinuous mor-
phology produced by PIMS is topologically similar to those found
in spinodally decomposed materials [96,99] and bicontinuous mi-
croemulsions [100], the sub-10 nm features of PIMS that emerge
spontaneously during polymerization are highly desirable for poly-
mer nanostructuring. High cross-linking density can add additional

stability to the PIMS materials. In comparison, the gyroid struc-
ture, representing an ordered version of the bicontinuous mor-
phology, suffers from its narrow phase window for broader ap-
plications [101-105]. In addition to the polymerization method-
ologies to the cocontinuous morphologies discussed earlier [82-
87], we note that cross-linking of block polymer materials in the
disordered state also produces similarly disordered bicontinuous
structures [106].

Schulze et al. investigated the effect of cross-linker loading on
the PLA-CTA/styrene/DVB system and showed that the cross-linker
content could determine the moment of structure arrest, spanning
from disorder to order [107]. An ordered lamellar morphology ap-
peared in the <2 mol% DVB condition, suggesting gelation occurred
after the order-disorder transition. Collapsed layers visualized by
scanning electron microscopy (SEM) after PLA removal supports
the assignment (Fig. 6b). Given that the PLA weight fraction pre-
dicts the cylindrical phase in equilibrium, the lamellar morphology
seems trapped by cross-linking. In the intermediate cross-linker
content (5 to 40 mol% DVB), a broad principal scattering peak fol-
lowed by a second-order shoulder characterized the scattering pat-
tern consistent with the disordered bicontinuous morphology with
some local order (Fig. 6¢). SEM images after PLA etching revealed
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are shown within the plots.

that percolating pores were templated by the PLA domain and sup-
ported by the three-dimensional continuous framework. Broaden-
ing of the principal peak with the vanishing second-order shoul-
der above 40 mol% DVB indicates early arrest results in the less-
ordered morphologies. The decrease in the Porod exponent at high
q with the increasing DVB fraction supports the increase in in-
terface roughness (Fig. 6d). Semispherical nodules constituting the
framework at high DVB loading were observed by SEM and at-
tributed to microgel formation due to extensive intramolecular cy-
clization.

Degree of polymerization N. Like conventional block polymer sys-
tems, the domain size of PIMS materials can be controlled by N.
Assuming RAFT polymerization in action, varying the molar mass
of the macro-CTA while keeping its weight fraction in the polymer-
ization mixture furnishes PIMS materials with tunable d (~ domain
size) at identical composition (Fig. Ge).

The d dependence on N has been investigated in the PLA-
CTA/styrene/DVB system at 20 mol% DVB loading (Fig. 6f) [22].
A linear relationship appears in the double logarithmic plot
with a scaling exponent of 0.48 (Fig. 6 g). This value is
close to 0.5, which is observed in the weak segregation limit
near the order-disorder transition [108]. A similar system com-
posed of PLA-CTA/4-vinylbenzyl chloride (VBzCl)&4-vinylbiphenyl
(VBP)/DVB also yielded 0.57 as the scaling exponent at the same
DVB content supporting that the arrest occurs in the disordered
state with less extended chain conformation (Fig. 6h) [109]. The
d value of PIMS materials is also much smaller than conven-
tional block polymers with comparable molar masses. For exam-
ple, PLA-b-PS containing 30 wt% PLA and synthesized with PLA-
CTA of number-average molar mass (M,) = 22 kg mol”! forms a
hexagonally packed cylindrical morphology with g* = 0.15 nm!
[110]. When the same PLA-CTA is loaded in the PIMS solution
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and with VBP (top, [VBP]:[VBzCl] = 1:3). Mypia.cta = 576 g mol~1.

with styrene and DVB, g* of 0.30 nm~! is obtained in the re-
sulting monolith at 20 mol% DVB loading, corresponding to the
PLA domain size of < 7 nm. The lower d value suggests that PLA
chains adopt less stretched conformation at the onset of gelation
because the segregation strength is lower than fully polymerized
PLA-b-PS, and the polystyrenic globules formed by cross-linking
creates a larger interfacial area to cover. The domain size can fur-
ther decrease by increasing the DVB loading. The facile access to
sub-10 nm domains is another advantage of the PIMS process.
Practically, increasing the length scale by using higher-molar mass
macro-CTAs is more challenging because of viscosity.

Interaction parameter. High x between the macro-CTA and the
growing block allows the system to enter the ordered phase early
and develop a narrow interface (Fig. 7a). However, preparing a ho-
mogeneous polymerization mixture would not be possible if y is
too high because the monomer would be highly incompatible with
the macro-CTA. Adding a selective additive and a comonomer has
been reported in the literature to increase x of the PIMS system.

McIntosh et al. investigated the effect of
bis(trifluoromethylsulfonyl)imide (BMITFSI) as an additive to
the PEO-CTA/styrene/DVB system (Fig. 7b-d) [111]. BMITESI is an
ionic liquid that is PEO-philic and miscible with the polymer-
ization mixture but immiscible with PS [112-114]. In the in situ
SAXS profile, the scattering intensity developed rapidly in the
presence of BMITFSI into a narrower peak at lower q (Fig. 7d).
The incompatibility of BMITFSI to the growing polystyrenic block

10

seems to promote microphase separation by selective partition-
ing of BMITFSI in the PEO domain, which increases x between
PEO (swollen with BMITFSI) and P(S-co-DVB) blocks. The authors
estimated the effective x increases by a factor of 1.5 (xpspeo IS
~0.065 at 25 °C and ~0.048 at 120 °C, which is the polymerization
temperature). They further predicted that microphase separation
occurs before gelation in the presence of BMITESI, while gela-
tion precedes in the pristine PEO-CTA/styrene/DVB system. Yet
the bicontinuous morphology composed of ion-conductive and
cross-linked domains lacking long-range order could be arrested,
presumably by preventing relaxation to morphological equilibrium.

Lee and Seo examined VBP, trimethylsilylstyrene (TMSS), 2-
vinylnaphthalene (2VN), and tert-butylstyrene (tBuS) as high-yx
comonomers in the PLA-CTA/VBzCI/DVB system (Fig. 7e and f)
[109]. All the PIMS products synthesized with the comonomers
showed narrower peak widths in the scaled log-log SAXS profile
compared to the virgin, consistent with the increased x (Fig. 7e).
VBP was studied further to evaluate the lower limit of N in PIMS.
While almost a featureless SAXS pattern was obtained without
the comonomer when PLA-CTA with M, of 576 g mol~! (ob-
tained by iterative synthesis) was used, a pronounced peak inten-
sity from the VBP-containing product supported the presence of
the microphase-separated morphology driven by higher yx (Fig. 7f).

Additive. A polymer without the CTA motif at the chain end
can be a selective additive in the PIMS process. Like homopoly-
mer/diblock copolymer blends, the phase behavior is primarily in-
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propagating center is added to keep the propagating center concentration constant (Series 2 in [72]). Without this, depletion of the propagating center at high ry results in
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fluenced by the composition and relative molar mass of the ho-
mopolymer to the relevant block (typically denoted « in the lit-
erature). The block copolymer microdomain can accommodate the
same polymer additive, but macrophase separation occurs above
the solubility limit into homopolymer-rich and block copolymer-
rich phases. The homopolymer with higher molar mass pushes
macrophase separation (especially when « > 1) because of the in-
creasing entropic penalty to keep the longer homopolymer chain
inside the microdomain with limited conformational freedom.
Park et al. systematically studied the effect of homopolymer in
the PLA-CTA/styrene/DVB system at a constant PLA weight load-
ing (Fig. 8a-d) [72]. When PLA homopolymer with the same mo-
lar mass as PLA-CTA was used, a gradually changing visual of the
PIMS products from transparent to opaque evidenced a transition
from PIMS to PIPS with the increasing PLA homopolymer fraction
(Fig. 8b). While control of the morphology and the domain length
scale was relatively poor at high PLA homopolymer contents, pre-
sumably because of low CTA concentration in the system, adding a
molecular CTA improved the control in the full range and retained
the bicontinuous morphology up to the micrometer length scale

1

(Fig. 8c and d). A lower molar mass PLA homopolymer (¢ < 1)
could increase the PLA weight fraction without macrophase sepa-
ration. Macrophase separation occurred at & > 1 along with PIMS,
which resulted in the PLA homopolymer phase coexisting with
the microphase-separated domains. Hierarchically porous polymers
containing pores at nanometer and micrometer length scales were
produced after PLA removal. In an earlier study, Saba et al. also
observed similar behavior with PEO homopolymer as an additive
to the PLA-CTA/styrene/DVB system (Fig. 8e-g) [115]. PEO forms a
miscible blend with PLA in the entire composition range, and the
basic treatment can simultaneously remove both PLA and PEO ho-
mopolymer. Swelling of the PLA domain and simultaneous micro-
and macrophase separation as a function of PEO molar mass cor-
roborates the profound impact of « in homopolymer-containing
PIMS systems.

In addition to ionic liquids, acetonitrile has been reported as a
small molar mass additive in the PLA-CTA/styrene/DVB system that
preferentially swells the PLA domain (Fig. 8h and i) [73]. Acetoni-
trile with more than 25-fold volume of PLA could be added to the
polymerization mixture and yet yield a monolithic PIMS product
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with the increased PLA domain size. PISA occurred in the further
diluted polymerization mixture with acetonitrile and produced
block polymer micelles composed of cross-linked polystyrenic core
and PLA corona. Accelerated polymerization rate and formation of
elongated and branched micellar morphologies in the presence of
DVB suggested that cross-linking helps segregation of the micellar
core in the early stage of the reaction and contributes to bridging
the cores via inter-core cross-propagation.

Simultaneous block polymerization/gradient copolymerization.
While most PIMS examples have utilized a macro-CTA con-
taining a presynthesized polymer block, an intriguing approach
has been reported by Seo et al. showing that PIMS can occur
when both blocks are simultaneously polymerized [116]. The
one-shot block polymerization was achieved using a hydroxyl-
functionalized trithiocarbonate as a RAFT CTA carrying an initiat-
ing site for ring-opening esterification polymerization (ROTEP) of
D,L-LACTIDEALTIDE. The authors confirmed that PS-b-PLA can be ob-
tained by sequential RAFT-ROTEP, ROTEP-RAFT, and simultaneous
RAFT-ROTEP by using Sn(Il) 2-ethylhexanoate as the ROTEP cata-
lyst. The one-shot polymerization of styrene, DVB, and D,L-LACTIDE
did afford a cross-linked block polymer monolith that could
be transformed into a nanoporous polymer upon PLA removal.
However, a clear principal scattering peak corresponding to the
block polymer length scale was not discerned in the SAXS analysis,
suggesting that the limited control over the RAFT polymerization
might have generated heterogeneity at the larger length scale.

A computational approach based on the dissipative particle dy-
namics simulations also suggested that controlled copolymeriza-
tion of styrene and 4-vinylpyridine (4VP) can induce microphase
separation because of the composition drift [117]. The much higher
reactivity ratio of styrene (rs = 17.39, r4yp = 0.058) leads to the for-
mation of gradient copolymers composed of the PS-rich and nearly
pure P4VP blocks. The authors found that the order-disorder tran-
sition occurred above critical conversion, which was influenced by
the composition and target N of the polymerization mixture. At
the order-disorder transition, x N was linearly proportional to the
target N. Various microphase-separated and lyotropic morphologies
could be predicted. While experimentally not verified yet, the se-
quence control based on the monomer reactivity could be a valu-
able platform for the synthesis of block polymer materials via one-
step PIMS.

3. PIMS-based materials

As pointed out earlier, the PIMS approach was originally de-
veloped for the synthesis of robust mesoporous polymer mono-
liths with percolating, sub-10 nm mesopores. More applications
have emerged by harnessing the bicontinuous morphology cap-
tured by in situ cross-linking and synergistically combining the
component functions. Postpolymerization modification and interfa-
cial tuning further diversified material composition attainable via
PIMS. This chapter reviews the materials produced based on the
PIMS methodology.

3.1. Nanoporous polymers

Nanoporous polymers are useful for separation, storage, and
heterogeneous catalysis applications [118,119]. PIPS in the presence
of a porogenic diluent is commercially used to prepare macrop-
orous beads and monolithic columns with interconnected macro-
pores for chromatography [35,42,120-123]. However, with the
macrophase separation-based methodology, downscaling pore size
below 100 nm with reliable control is challenging. Block polymer-
based approaches are a unique route to well-defined nanoporous
polymers with control over pore size, comparable to inorganic
counterparts such as mesoporous silica, yet taking advantage of
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compositional diversity and high processability of polymeric ma-
terials [124,125]. Selective removal of the sacrificial block in the
microphase-separated block polymer precursor is particularly ap-
pealing as the block polymer morphology persists during etching
and thus precisely dictates the pore structure and pore size [126-
128].

With the PLA-CTA/styrene/DVB combination, Seo and Hillmyer
showed that the disordered bicontinuous morphology derived by
the PIMS process could be converted into a 3D continuous pore
structure (Fig. 9a) [22]. In a typical run, PLA-CTA was dissolved
in a mixture of styrene and DVB (4:1 in molar ratio) to make a
30 wt% solution. Heating up to 120 °C initiated the RAFT polymer-
ization by spontaneous radical generation via the Diels-Alder reac-
tion of styrene ("autoinitiation"). Solidification of the whole poly-
merization mixture yielded a monolithic precursor molded by the
shape of the polymerization vessel. High transparency to visible
light supported the absence of macroscopic heterogeneity typical
in PIPS, indicating that the block polymerization successfully con-
fined the length scale to the nanometer level. The yellow color of
the precursor originated from the trithiocarbonate group in the
CTA motif. PLA was chosen because it could be readily etched
out in the basic condition (e.g., 0.5 M NaOH solution in a wa-
ter/methanol mixture). Complete removal of PLA was confirmed by
FTIR (Fig. 9b), differential scanning calorimetry (DSC, Fig. 9c), and
gravimetric weight loss measurements. A quarter coin-sized mono-
lith could be rendered porous while retaining the original shape,
supporting the bicontinuity of PLA and P(S-co-DVB) microdomains
(Fig. 9d). Otherwise, the complete PLA etching would be impos-
sible, or the pore structure would collapse. SEM imaging showed
that the 3D continuous nanopore structure without long-range or-
der uniformly appears in the entire sample. Mesopores develop ex-
clusively in the nanoporous polymer in contrast to the PIPS-based
macroporous materials (Fig. 9f and g).

PIMS was a breakthrough in nanoporous polymer synthesis
that opened up easy access to 3D continuous mesopore structure,
which has been mostly limited to the gyroidal template suffering
from a narrow phase window. The pore continuity was tested by
gas and water permeation experiments. The gas permeation pro-
files were consistent with the Knudsen diffusion (Fig. 9h) [129].
The tortuosity factor accounting for the increased path length com-
pared to a straight channel was estimated as 1.7, which is within
the predicted range for small molecule transport through disor-
dered, cocontinuous composites. The water permeation test based
on the Poiseuille model also gave a tortuosity of 1.4 (Fig. 9i) [130].

Another benefit of PIMS is in situ cross-linking can stabilize
pores smaller than 10 nm, challenging for block polymer-based
nanoporous polymers. As Laplace pressure increases with the de-
creasing pore size, smaller pores are more likely to collapse and re-
lease the excess surface free energy as heat [131,132]. The densely
cross-linked P(S-co-DVB) domain provides a rigid framework that
prevents pore collapse and renders robust mechanical properties.
The virtually identical SAXS pattern with a huge increase in the
scattering intensity after PLA etching indicated the increased elec-
tronic density contrast to P(S-co-DVB), consistent with transform-
ing the PLA domain into a void with retention of the parent
morphology (Fig. 10a). The lack of an endothermic transition in
the first heating cycle of the nanoporous polymer supports that
the pore collapse is prevented (Fig. 9c). The correlation of the
SAXS domain spacing to the PLA molar mass also persists in the
nanoporous polymer state, indicating robust control over the pore
size can be possible.

Seo and Hillmyer evaluated the pore characteristics of
nanoporous monoliths obtained with 20 mol% DVB loading by ni-
trogen sorption isotherm analysis at 77 K (Fig. 10b). A large N, up-
take at high relative pressure supported the presence of mesopores
(in 2 - 50 nm) via capillary condensation. An H2-type hystere-
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after PLA etching. An arrow marks the C = O vibrational band originating from PLA. (c) DSC thermograms of PLA-CTA, the cross-linked precursor, and the nanoporous poly-
mer. The data were obtained during the second heating cycle. For the nanoporous polymer, the data during the first heating cycle is also shown. (d) Photo of the cross-linked
precursor and the nanoporous polymer. The precursor was molded and milled into the size of a quarter coin. (e) SEM image of the nanoporous polymer obtained with 22 kg
mol~! PLA-CTA. Imaging was performed after Pt coating. An inset shows a high-magnification image. (f-g) SEM images of PIPS products obtained from PLA/styrene/DVB (f)
and PLA/styrene/DVB with a molecular CTA (g; this is essentially identical to the ry = 1 case shown in Fig. 8b). Images were taken after PLA etching and Pt coating. (h) Gas
permeation data to deduce tortuosity (7) of the nanoporous polymer based on Knudsen diffusion model. (i) Pressure drop vs. flux plot for water permeation. The nanoporous
polymer synthesized with 41 kg mol~! PLA-CTA was used for the permeability measurements.

sis was consistent with the porous network structure [133]. The
“open” gap between the adsorption and desorption branches was
attributed to the trapped N, in the P(S-co-DVB) matrix [134]. By
varying the PLA molar mass from 11 to 41 kg mol~!, the average
pore size estimated by the Barrett-Joyner-Halenda (BJH) model in-
creased from 4 to 8 nm (Fig. 10c) [135]. The trend was in good
agreement with the domain spacing change of 15 to 27 nm de-
termined by SAXS. We note that the BJH model assumes 1D infi-
nite porous cylinders and tends to reflect “pore neck” size when
applied to the interconnected pores. The Brunauer-Emmett-Teller
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(BET) specific surface area was on the order of 100 m2 g~! for all
the polymers, also consistent with the mesoporous nature [136].
Schulze et al. examined the effect of DVB loading on pore
characteristics (Fig. 10d-f) [117]. The higher cross-linking density
was critical for preserving smaller pores derived from lower mo-
lar mass PLA-CTAs. When 8 kg mol~! PLA-CTA was used with 20
mol% DVB, the pronounced SAXS intensity at lower g was consis-
tent with the increased heterogeneity at large length scales caused
by pore collapse (Fig. 10d). Only negligible N, uptake corrobo-
rated pore collapse during PLA etching (Fig. 10e). A significant frac-
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Fig. 10. Control of pore size and stability. (a-c) Pore size control as a function of PLA-CTA molar mass. DVB loading was 20 mol% [22], Copyright 2012. Adapted with
permission from the American Association for the Advancement of Science. (a) SAXS data before (dashed line) and after PLA etching (solid line). (b) Nitrogen sorption
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after PLA etching (solid line). (e) Nitrogen sorption isotherms. Filled symbol: adsorption branch; Open symbol: desorption branch. (f) QSDFT pore size distribution for 8 kg
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tion of pores survived above 60 mol% DVB loading. In general,
increasing the DVB content declined the slope of the adsorption
branch in the hysteresis regime (more H2-like), indicative of the
more winding pore structure with less order. An increase in the
N, uptake at low relative pressures (P[Pp < 0.1) was attributed
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to the formation of pores within the P(S-co-DVB) framework. The
pore size estimated by nonlocal or quenched solid density func-
tional theory (NL- or QSDFT) analysis of the nitrogen adsorption
isotherms supported the broadened pore size distribution and pop-
ulation of 2-3 nm pores (Fig. 10f) while the t-plot analysis did
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not reveal microporosity (Fig. 10 g). All the pores were lost at
2 kg mol~! PLA-CTA even with 100 mol% DVB, limiting down-
scaling pore size further and accessing the microporous regime
(< 2 nm).

Creating micropores smaller than 2 nm within the framework
can produce hierarchically porous polymers containing micro- and
mesopores. The 3D continuous mesopore structure built by PIMS
allows molecules to diffuse rapidly and access the large surface
area provided by the micropores, improving adsorption and reac-
tion kinetics. Larsen et al. used styrenic monomers containing ster-
ically demanding groups at the para position to replace styrene in
the PLA-CTA/styrene/DVB system to create intrinsic microporosity
as permanent free volume within the cross-linked polystyrenic do-
main (Fig. 11a) [137]. They found that monomers providing higher
glass transition temperature (Tg), such as tBuS and TMSS, increased
the BET surface area after PLA etching by creating additional pores
in the 2-5 nm range in the QSDFT distribution (Fig. 11b-d). Neg-
ligible N, uptake before PLA removal indicated that the pores are
only accessible through the mesoporous space.

Satheeshkumar and Seo designed rigid multifunctional cross-
linkers containing biphenyl units and used them instead of DVB
(Fig. 11e-h) [138]. N,N-dimethylformamide (DMF) was added as
a solvent to make a homogeneous polymerization mixture be-
cause the cross-linkers were solids insoluble in styrene. Nonethe-
less, bicontinuously nanostructured materials were obtained con-
sistent with the PIMS mechanism and turned porous by PLA
etching. 1,3,5-Tris(4-vinylphenyl) benzene (3VBP) and tetrakis(4-
vinylbiphenyl)methane (4VBM) containing three and four styrenic
double bonds generated noticeable micropores, as evidenced by
the N, uptake at very low relative pressure, presumably by
constructing a rigid cross-linked network with the expanded
interchain distance (Fig. 11f and g). Consistent with Larsen
et al., the micropores were not detectable without PLA etch-
ing. The cross-linkers were also more effective in reinforcing the
framework against Laplace pressure and retaining smaller meso-
pores. Satheeshkumar et al. synthesized 2,3,6,7,10,11-hexakis(4-
vinylphenyl)triphenylene, a triphenylene-based hexavinyl cross-
linker, to utilize further the fluorescent feature of the extended -
conjugated system (Fig. 11f and h) [139]. A hierarchically porous
monolith containing micropores within the mesoporous wall was
obtained, showing strong bluish fluorescence originating from
triphenylene under UV. Exposing the monolith to organic solu-
tions containing nitroaromatics turned off the fluorescence. Faster
and more efficient fluorescence quenching compared to nonporous
solid analog suggests the potential as a robust and reusable sens-
ing platform.

Hyper-cross-linking was combined with PIMS to produce hi-
erarchically porous polymers containing micro- and mesopores
(Fig. 12). Typically, hyper-cross-linking involves Friedel-Crafts alky-
lation of aromatic molecules in the presence of Lewis acid such
as FeCls (Fig. 12a) [140]. PVBzCl having benzyl chloride pendants
along the polystyrenic main chain is a well-known precursor for
hyper-cross-linking, where the benzyl carbocation attacks other
aromatic rings to form a rigid cross-linked network bridged by the
methylene unit. In the swollen state by a solvent, the reaction per-
manently arrests the interchain free volume into micropores. Exter-
nal agents capable of methylene insertion, such as formaldehyde
dimethyl acetal, can also be used to hyper-cross-link polystyrene
[141].

Seo et al. investigated PIMS of the PLA-CTA/VBzCl/DVB system
(Fig. 12b) [143]. After obtaining the monolithic precursor com-
posed of PLA and P(VBzCl-co-DVB) bicontinuous microdomains,
swelling the precursor in 1,2-dichloroethane and reacting with
FeCl; produced hierarchically porous polymers in a powdery form.
SEM visualized the 3D continuous mesopore structure characteris-
tic of PIMS, indicating degradation of PLA by FeCl; through C-O
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bond cleavage (Fig. 12c). While micropores were not visible in
SEM after Pt coating, TEM imaging in a later study corroborated
the coexistence of white micropores within the black mesoporous
framework and gray mesopores (Fig. 12d) [109]. SAXS analysis also
supported that the PIMS morphology was retained during hyper-
cross-linking as in the case of basic etching (Fig. 12e). A mas-
sive uptake at very low relative pressure in the nitrogen sorption
isotherm confirmed abundant micropores occupying ~0.3 mL g~!
in volume and 600 m2 g~! in surface area estimated by the t-plot
analysis (Fig. 12f). Combined with the mesoporosity templated by
PLA, highly porous materials exceeding 1000 m% g~! of BET sur-
face area and 1 mL g~ ! of pore volume could be obtained. PLA
removal in the basic condition produced polymers with mesopores
only, supporting that hyper-cross-linking is responsible for microp-
ore formation. While the PLA molar mass predominantly controlled
mesopore size in the hierarchically porous polymer, the pore size
was noticeably larger than the PLA domain size, probably because
of swelling in the hyper-cross-linking step. In a follow-up study,
Kim and Seo showed that hyper-cross-linking improved mesopore
stability by additionally reinforcing the polystyrenic framework
cross-linked by DVB [144]. The 3D continuous mesopores could be
preserved even at low DVB loading after hyper-cross-linking with-
out pore collapse (Fig. 12 g). The pore characteristics, including
micro- and mesoporosities and mesopore size, could be adjusted
by the VBzCl and DVB fractions in the polymerization mixture
(Fig. 12h). The hierarchically porous polymer exhibited faster nitro-
gen adsorption kinetics compared to the microporous analog in the
early stage (Fig. 12i). The adsorption rate of methyl orange from an
aqueous solution was also enhanced than the microporous poly-
mer with a similar BET surface area, particularly when the concen-
tration was high (Fig. 12j).

The hyper-cross-linked hierarchically porous polymer also
shows higher thermal stability than the mesoporous polymer with
the P(S-co-DVB) framework. Kim et al. took this advantage to
prepare a heterogeneous catalyst for the Suzuki-Miyaura cross-
coupling reaction in the liquid phase (Fig. 13a) [145]. The pore
structure persisted while loading the polyvinylpyrrolidone (PVP)-
capped Pt nanoparticles and removing the ligand by plasma treat-
ment (Fig. 13b). The hierarchically porous polymer-supported Pt
catalyst outperformed micro-, mesoporous polymer analogs, and
mesoporous oxide supports in reaction yield and recyclability
(Fig. 13c). High catalytic activity toward challenging aryl chloride
substrates was also noticed.

Lee and Seo reported that using trimethylsilylstyrene (TMSS)
as a comonomer with VBzCl and DVB could boost microporosity
further (Fig. 13d and e) [146]. The bulky trimethylsilyl group cre-
ates more void in the hyper-cross-linked domain by increasing the
interchain distance and preferentially reacting with the carboca-
tion in the Friedel-Crafts alkylation to leave the polymer network.
They further explored the lower limit of attainable pore size in the
PIMS systems (Fig. 13f) [109]. They found that the insufficient seg-
regation strength of the system at low N, not framework stability
when reinforced by hyper-cross-linking, limits pore downsizing as
it hinders the formation of the microphase-separated morphology
with high domain purity. In the search for high-x comonomers
to increase the segregation strength (also see Section 2.2), the
authors chose VBP as the high-x and hyper-cross-linking-active
comonomer. At a constant DVB fraction (20 mol%), the molar com-
position of VBzCl vs. VBP was optimized to balance segregation
strength and hyper-cross-linking density (Fig. 13 g). With the op-
timal 1:3 ratio, SAXS analysis with the Teubner-Strey fitting indi-
cated that a weakly segregated precursor could be achieved even
with 576 g mol~! PLA-CTA (Fig. 7h). At this N, the length scale
of the PLA domain and the interchain free volume unified to pro-
duce a porous polymer containing nearly exclusively micropores
centered at 1.1 nm instead of the bimodal pore size distribution in
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the nitrogen sorption analysis. SAXS and TEM analyses supported
the presence of micropores at this length scale, which was consis-
tent with scaling of domain spacing and pore size as a function of
PLA molar mass (Fig. 13i).

Finally, we note an interesting twist in the nanoporous polymer
synthesis reported by Saba et al. The authors introduced PI-CTA as
another macro-CTA incompatible with both PLA and polystyrenic
chains [147]. The RAFT polymerization of DVB in the presence of
PLA- and PI-CTAs yielded a tricontinuous morphology composed of
PLA, PI, and PDVB domains that do not intersect. Basic PLA etch-
ing and cross-metathesis of PI with trans-4-octene removed the
corresponding domains to produce bicontinuous nanoporous chan-
nels. This strategy could be useful for increasing mesoporosity and
tailoring the surface of different porous channels with orthogonal
surface chemistries.

3.2. Polymer electrolytes

Polymer electrolyte membranes are appealing alternatives to
liquid electrolytes in lithium batteries and high-temperature fuel
cells [148-156]. The solid-like electrolytes with higher mechan-
ical properties are anticipated to avoid electrolyte leaking and,
in the case of lithium batteries, suppress dendrite formation on
the electrode surface which causes safety problems [150,151,157].
Leveraging high elastic modulus without sacrificing the ion con-
ductivity necessary for cell operation should be key in design-
ing polymer electrolyte membranes. PIMS offers a promising route
to highly conductive and mechanically robust polymer electrolyte
membranes composed of ion-conducting and densely cross-linked
domains with long-range, isotropic bicontinuity. Compared to pre-
vious block polymer-based approaches, such as gelling ionic lig-
uid with triblock copolymers and aligning lamellar-forming di-
block copolymer materials swollen with ionic liquid, the PIMS ap-
proach provides much improved mechanical attributes while re-
taining high conductivity in a simple synthetic step.

Schulze et al. reported PIMS-derived polymer electrolyte mem-
branes using the PEO-CTA/styrene/DVB system with BMITFSI and
LiTFSI as ionic additives (Fig. 14) [158]. TEM and SEM (after PEO
removal) imaging supported the PEO/BMITFSI and cross-linked
polystyrenic bicontinuous domains were formed as a result of
PIMS (Fig. 14b and c). The high conductivity of the materials
was attributed to continuous conductive channels over macro-
scopic distances. Compared to a homogeneous electrolyte of the
same PEO/ionic liquid composition, the estimated tortuosity fac-
tors were within the predicted bound of 1.5 - 3. Because mechan-
ical and transport properties are decoupled in the microphase-
separated morphology, the cross-linked polystyrenic domain re-
sponsible for modulus provided structural integrity even above
the Ty of linear PS. Electrolyte materials with conductivity close
to 10 mS/cm and elastic modulus of 0.1 GPa could be obtained
(Fig. 14d and e). Increasing the ionic liquid content increased
the charge carrier but lowered elastic properties, resulting in a
trade-off between the ionic conductivity and the modulus ac-
cording to the material composition. Replacing the ionic liquid
with succinonitrile rendered the PEO/Li domain completely amor-
phous, resulting in even higher conductivity (~0.35 mS/cm) at
30 °C [159]. Other ionic liquids, such as protic 1-ethylimidazolium
bis(trifluoromethylsulfonyl)imide (HEImTFSI), could also be incor-
porated into the PEO-CTA/styrene/DVB system and produce an-
hydrous proton-conducting polymer electrolyte membranes with
high conductivity and high modulus [160]. Recently, Liu et al.
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reported adding polyoxometalates (H3PW15049, Li7[V15036(CO3)])
into the PEO-CTA/styrene/DVB system to fabricate anhydrous solid-
state electrolytes [161]. The inorganic additives preferentially par-
titioned into the PEO domain and constructed effective ion-
conducting nanochannels for proton and lithium.

Chopade et al. applied the PIMS-based polymer electrolyte
membranes as ionic liquid-based reference electrodes [162].
Ionic liquid-based electrodes develop stable potential at the
interfaces of ionic liquid and aqueous solutions of varying
ionic strength and electrolyte composition, providing prac-
tical benefits over commercial KCl/porous-frit-based elec-
trodes [163]. The authors incorporated hydrophobic 1-octyl-3-
methylimidazolium bis(trifluoromethyl sulfonyl)imide (CgmimNtf,)
and 1-dodecyl-3-methylimidazolium  bis(trifluoromethyl  sul-
fonyl)imide (C{,mimNtf;) into the PMMA-CTA/styrene/DVB system.
The electrode could be prepared by inserting the AgCl-coated wire
into the polymerization mixture, which was firmly encapsulated
within the product during polymerization. PIMS reliably produced
the nanoscopic bicontinuous morphology comprising the ionic
liquid-doped PMMA and cross-linked polystyrenic domains. Com-
paring the poly(vinylidene fluoride-co-hexafluoropropylene)-ionic
liquid electrode previously reported in the literature [164], the
PIMS-based reference electrode showed higher reference potential
stability and reproducibility as well as sufficiently high ionic
conductivity.

Bae et al. utilized the PEO-CTA/styrene/DVB system with
BMITFSI as an ionic liquid additive to fabricate structural superca-
pacitors (Fig. 14f-j) [165]. A structural supercapacitor is a promising
composite material for lightweight electric vehicles that provides
high electricity storage capacity and simultaneously supports me-
chanical loads. One of the key challenges is to develop structural
electrolytes that combine high ionic conductivity and mechanical
rigidity and integrate them with active electrodes in conformal
contact to minimize interfacial resistance and maximize mechani-
cal reinforcement. The authors used carbon-coated Ni-Co core-shell
nanowires on carbon fabric as active electrodes with high specific
surface area to utilize electrical double-layer capacitance and fast
faradaic electron charge transfer with redox reactions (pseudoca-
pacitance). The supercapacitor was prepared by sandwiching the
PIMS solution between the two electrodes and conducting poly-
merization. The nanowires immersed in the polymerization mix-
ture were fully embedded in the final material, enabling load
transfer through the interface to the carbon fiber. Stable charge-
discharge cycling with capacitance retention supported that ion-
conductive continuous pathways span the whole electrolyte thick-
ness. Above 30 wt% loading of the ionic liquid, the composite un-
derwent the brittle-ductile transition (Fig. 14g and h). The capaci-
tor containing 30 wt% of the ionic liquid showed a tensile strength
of ~ 100 MPa and power densities of 0.5 to 1 kW kg~!. In the in
situ mechano-electrochemical tests, the capacitor retained its ca-
pacitance during tensile and bending deformation, supporting that
the structural electrolyte produced by PIMS can provide sufficient
structural durability and integrity to the composite while main-
taining the ability to store electricity under external loads (Fig. 14i
and j).

3.3. Postpolymerization-modified materials

Postpolymerization modification refers to a reaction involving
a presynthesized polymer as the substrate [166-168]. The PLA
etching and hyper-cross-linking steps in the nanoporous polymer

structure of MVCLs reported in the literature. (g) Nitrogen sorption isotherms of the porous polymers synthesized with MVCLs. The DVB data is included as a reference.
Filled symbol: adsorption branch; Open symbol: desorption branch [138], Copyright 2018. Adapted with permission from the Royal Society of Chemistry. (h) Fluorescent
porous monolith synthesized with TP and its fluorescence quenching upon exposure to nitroaromatics in organic solutions [139], Copyright 2023. Adapted with permission
from Elsevier Science Ltd. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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synthesis discussed above can be examples of postpolymerization
modification of the block polymer precursors produced by PIMS.
Here we discuss other chemical transformations, such as installing
and converting functional groups, to see how postpolymerization
modification enables to incorporate functional groups that cannot
be directly included during the precursor synthesis and thus diver-
sifies the scope of PIMS-based functional materials.

Postsulfonation. Jeon et al. reported postsulfonation of
nanoporous P(S-co-DVB), which was derived by PIMS of PLA-
CTA/styrene/DVB (Fig. 15a) [169,170]. The polymerization mixture
was loaded in the middle of a sandwich assembly of glass plates
to produce large-area samples. The postsulfonation reaction with
concentrated sulfuric acid installed sulfonic acid groups on the
polystyrenic pore surface via the electrophilic aromatic substitu-
tion mechanism. While nitrogen sorption analysis was impossible
after sulfonation, SEM and SAXS data showed the highly cross-
linked framework retained the 3D continuous pore structure
during the reaction. The sulfonic acid content could be controlled
by reaction time to reach the ion exchange capacity (IEC) up to 2
meq g~ 1.

Proton conductivity increased with IEC regardless of the pore
size, suggesting that protons traverse the pore mainly via a hop-
ping mechanism [171]. In contrast, the ion permeability of al-
kali chlorides in aqueous solutions decreased with the increas-
ing sulfonic acid content, presumably because of electrostatic drag
from the pore wall. Cations with smaller hydrodynamic radii dif-
fused faster through larger pores, indicating that the transport of
ions driven by chemical potential difference occurs via a vehicu-
lar mechanism [171-173]. When the pore size was reduced below
4 nm, a theoretical threshold for VO2t crossover [172], VO2* per-
meability through the sulfonated pores dropped less than 4 x 10~8
cm? min~!, which was 100 times lower than that of Nafion 212
(Fig. 15b). The permeability data suggests that the PIMS-based
membranes with well-defined pore size and tailored surface charge
characteristics can enhance permselectivity more than conven-
tional proton exchange membranes such as Nafion.

To take advantage of decoupled proton conductivity and VO%*+
permeability for the vanadium redox flow battery application, the
authors developed a reinforced version of the free-standing mem-
brane by impregnating a polyethylene fiber mat in the polymer-
ization mixture. A much thinner yet mechanically superior mem-
brane could be prepared with improved surface roughness. The
effect of the polyethylene fiber on the PIMS process and the re-
sulting pore structure seems minimal. A vanadium redox flow bat-
tery cell was fabricated with the optimized membrane compared
with Nafion of a similar thickness. Higher voltage and coulom-
bic efficiencies and excellent energy efficiency retention were at-
tributed to facilitated proton conduction along the sulfonated pore
surface and effectively suppressed VO crossover by adjusting the
pore size (Fig. 15b). This is the first example of block polymer-
based nanoporous membranes for battery applications, suggesting
the great potential of the PIMS methodology in this field.

Functional group conversion. Goldfeld et al. reported the func-
tional group conversion approach to preparing nanostructured
polymer electrolyte thermosets that carry charges bound to the
polymer chain in the active domain (Fig. 15c) [174]. The authors
used poly(n-octyl styrene sulfonic ester) and PVBzCl as macro-CTAs
containing pre-functional polymer blocks. With styrene and DVB,
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PIMS produced the bicontinuously nanostructured precursors. Ex-
posure to trimethylamine solution converted the pre-ionic poly-
mers to negatively charged poly(styrene sulfonate) and positively
charged poly(vinylbenzyl trimethylammonium), respectively, while
retaining the morphology [175]. ATR-IR analysis confirmed quan-
titative conversion. The low extent of swelling in water due to
the cross-linked polystyrenic framework indicated the dimensional
stability of the electrolyte materials. Adsorption of complementar-
ily charged dye molecules corroborated successful functionalization
through the percolating pre-ionic domains derived by PIMS.

Incorporating the pre-functional polymer block between the
sacrificial and framework blocks allows the functionalized polymer
chains to decorate the pore surface [176]. Peterson et al. applied
this “middle block” approach to PIMS to synthesize nanoporous
beads with cation- and anionically functionalized pore walls
(Fig. 15d) [177]. They introduced polycaprolactone (PCL) as a sac-
rificial block that can be degraded under the alkaline condition,
and extended the chain with PVBzCl or poly(tert-butyl acrylate)
as pre-ionic polymer blocks via RAFT polymerization. The result-
ing diblock copolymers were used as macro-CTAs combined with
styrene and DVB in suspension polymerization to produce pre-
cursor beads following the PIMS mechanism. Basic etching fol-
lowed by acidic deprotection of the tert-butyl group resulted in
poly(acrylic acid) chains dangling on the pore surface. Strong in-
compatibility between poly(tert-butyl acrylate) and PS seems to
assist the formation of the well-defined pore structure [178]. An
aqueous triethylamine solution concurrently etched PCL and mod-
ified the PVBzCl block while using anhydrous functionalized the
PVBzCl block only. While the SAXS data indicated the retention of
the morphology, negligible porosity of the cationic beads was at-
tributed to the extended conformation of the charge chains filling
up the porous channel [177]. Dye adsorption kinetic experiments
also supported the presence of well-defined ion channels enabling
fast adsorption of molecules with complementary charges, outper-
forming commercial Amberlite HPR4811 in the case of the cationic
beads. This approach will be useful for tailoring the pore surface
with control of functional group density.

Ceramization. Hwang et al. reported the conversion of the pre-
ceramic polymer framework into silicon carbonitride (Fig. 15e)
[179]. The authors used a methacrylate-modified vinylsilazane as
a monomer in the PIMS recipe with PEO-CTA and DVB [180]. The
resulting organic-inorganic hybrid was heated to 1000 °C to de-
compose PEO and convert the silazane-rich phase into SiCxNy ce-
ramic. DVB was vital to maintain the structural integrity of the re-
sulting mesoporous ceramics. Temperature-dependent in situ SAXS,
FTIR, TGA analyses, and nitrogen sorption analysis of the post-
mortem samples, suggested that mesopores and micropores de-
velop above 650 °C. While the decomposition of PEO generates
mesoporous voids, the Si-rich framework undergoes densification
with the pyrolysis of organic residues, resulting in micropore for-
mation and reduction in both nanoscopic and macroscopic dimen-
sions. Because of the isotropic nature of the disordered bicontinu-
ous morphology captured by PIMS, the ceramic retained its original
geometry upon isotropic shrinkage, as demonstrated with molded
samples. While the PEO molar mass primarily controlled the meso-
pore size, the sample synthesized with 10 kg mol~! PEO-CTA lost
porosity above 750 °C. Mesopores centered at 9.1 nm survived at
1000 °C when 20 kg mol~! PEO-CTA was used, while microporos-

Copyright 2021. Adapted with permission from the American Chemical Society. (e-f) SAXS patterns (e) and N, sorption isotherms (f) of HPP obtained with 41 kg mol~!
PLA-CTA compared to reticulated mesoporous polymer (RMP) derived by basic etching. The SAXS data is vertically shifted for clarity [143], Copyright 2015. Adapted with
permission from the American Chemical Society. (g-h) SAXS data (g) and pore characteristics (h) of HPPs obtained with 22 kg mol~! PLA-CTA and different [VBzCl]:[DVB]
ratios. The SAXS data is vertically shifted for clarity [144], Copyright 2018. Adapted from John Wiley & Sons Inc. The bar graph was plotted based on the data shown in
[144]. (i) Nitrogen adsorption kinetics of HPP (blue) compared to hyper-cross-linked polymer (black) containing micropores only. The measurements were performed at 77 K
with different initial pressures [143], Copyright 2015. Adapted with permission from the American Chemical Society. (j) Sorption kinetics of methyl orange on HPP (blue)
compared to hyper-cross-linked polymer (black) from aqueous solutions at different initial concentrations [144], Copyright 2018. Adapted from John Wiley & Sons Inc.
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Fig. 13. (a-c) Pt nanoparticle-loaded polymer support as a heterogeneous catalyst for the Suzuki-Miyaura cross-coupling reaction [145], Copyright 2021. Adapted with permis-
sion from the American Chemical Society. (a) Schematic depiction for the catalyst preparation, including PVP-stabilizing Pt nanoparticle loading into HPP followed by plasma
treatment. (b) TEM image of the prepared Pt-HPP catalyst. (c) Recyclability of Pt-HPP compared to microporous (HCP) and mesoporous (RMP) polymers and mesoporous
silica (SBA-15 and MCF-17) as supports. (d-e) Enhancing microporosity by introducing the trimethylsilyl group as the preferred leaving group in the Friedel-Crafts alkylation.
(d) Schematic illustration of the mechanism [146], Copyright 2018. Adapted with permission from the American Chemical Society. (e) Enhancement in surface areas of HPP
produced from the PLA-CTA/TMSS&VBzCI/DVB system. The bar graph was plotted based on the data shown in [146]. The data without TMSS is shown as a reference. (f-i)
Lowering the pore size limit by incorporating VBP [109], Copyright 2021. Adapted with permission from the American Chemical Society. (f) Higher-chi, hyper-cross-linkable
comonomer strategy to induce microphase separation at lower N and stabilize the pore structure by hyper-cross-linking. (g) Pore volume of the porous polymers without
VBP as a function of PLA molar mass (M,pia) and cross-linking density. In each column, solid (top) and patterned (bottom) fractions represent the contribution of meso-

(Vimeso) and micropores (Vpicro ) respectively. (h) Sger of the VBP-containing porous polymers as a function of Mypa and [VBP]:[VBzCl] ratio. (i) Double logarithmic plot of
dsaxs and Dyprr as a function of My pa. The dsaxs data is identical to that shown in Fig. 6h. (f-i).

ity diminished due to highly dense ceramization. TEM imaging cor-
roborated the mesoporous nature of the resulting ceramic material,
and also revealed the presence of an amorphous, graphite-like car-
bon phase derived from DVB in the SiCN ceramic phase.
Compared to previous strategies for mesoporous ceramics
synthesis using silicon-containing block polymer precursors that
typically require complicated solvent/thermal annealing steps to
achieve uniformity and long-range continuity of the domains,

20

the organic-inorganic hybrid PIMS methodology utilizing prece-
ramic monomers offers a convenient, moldable, and scalable syn-
thesis of preceramic materials with control of domain size. The
PIMS-derived nanoporous ceramics are expected to find applica-
tions in catalysis, separation, optical materials, and energy devices
[181,182].

Reversible photoreaction. A unique example of postpolymeriza-
tion modification was reported by Peterson and Hillmyer where
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the authors utilized reversible spiropyran-merocyanine conversion
by light (Fig. 15f) [183]. Spiropyran is a well-known photochromic
dye that undergoes a C-O bond cleavage upon UV irradiation
to form deeply colored merocyanine [184,185]. Without UV, the
ring-closing reaction restores the colorless spiropyran. While the
dye has been embedded in optically transparent materials such
as PMMA to make responsive lenses, improving the photochromic
transition rate has been challenging because the glassy matrix with
little free volume hinders the reaction [186,187].

The authors adopted the PIMS approach to creating a bicon-
tinuously nanostructured thermoset comprising rubbery and glassy
domains, where the spiropyran motif is attached to some rubbery
chain ends (Fig. 15f). Poly(y-methyl-¢-caprolactone) (P4MCL) with
Ty of —60 °C was chosen as the rubbery polymer [188]. P4AMCL-
CTA containing 1.6% of dye-functionalized PAMCL was combined
with MMA and ethylene glycol dimethacrylate as a cross-linker in
the PIMS recipe. Polymerization produced a transparent yet yel-
low monolith because of the trithiocarbonate group. The monolith
turned deep violet upon UV exposure and returned to its original
color over time. The decoloration rate of the PIMS product was

21

five times faster than the dye-doped PMMA, supporting that the
P4AMCL-appended spiropyran is preferentially located in the rub-
bery domain containing large free volume. A PIMS product pre-
pared by adding free spiropyran to the polymerization, where the
dye should be statistically distributed across the whole specimen,
showed slower decoloration kinetics and corroborated the impor-
tance of covalent engineering for the dye-polymer conjugate. Faster
decoloration was achieved by lowering the PAMCL molar mass, de-
creasing the cross-linking density, and increasing the P4AMCL mass
fraction.

4. PIMS-compatible polymerization techniques
4.1. Neat thermal polymerization

RAFT copolymerization of vinyl monomers has been used as
a main workhorse in the PIMS process to secure the covalent
junction between the macro-CTA and the growing polymer block.
Trithiocarbonates have been the choice of CTA that offer bal-
anced activity and stability for more activated monomers, includ-
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Society. [207], Copyright 2018. Adapted with permission from the Royal Society of Chemistry.

ing styrenics, methacrylates, and acrylates [189]. Carboxylic acid-
and hydroxyl-functionalized CTAs are useful for conjugating with
hydroxy-terminated homopolymers and initiating ROTEP of cyclic
ester monomers to produce macro-CTAs [190,191].

Azobisisobutyronitrile (AIBN) has been widely used as a ther-
mal radical initiator for the PIMS process in the temperature range
of 50-90 °C. Autoinitiation above 120 °C without external radical
initiators has also been utilized for styrenic monomers. Schulze
et al. investigated the effect of polymerization temperatures of
60 and 120 °C on nanoporous polymers derived from the PLA-
CTA/styrene/DVB formulation with AIBN [107]. While x should de-
crease with the increasing temperature, negligible differences in
the g* position in the SAXS patterns suggested the reaction kinetics
dominates the morphology at the onset of arrest. The polymeriza-
tion at 120 °C produced larger BET surface areas in the resulting
nanoporous polymers, probably because of the more rigid frame-
work formation with elevated cross-linking. In some cases, addi-
tional heating to 200 °C was applied in the final polymerization
stage to consume the remaining double bonds further and rigidify
the structure [123].

In principle, the RAFT polymerization as controlled radical poly-
merization should be performed in an inert atmosphere to avoid
chain transfer to oxygen. Nonetheless, adding more AIBN to the
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polymerization mixture facilitates the PIMS process in air. The
neat polymerization mixture without solvent can be poured into
a closed container with the desired shape and heated under an
ambient atmosphere to solidify the whole liquid into a molded
block polymer monolith. Fig. 16 comprises different forms forged
by the PIMS processes and their internal structures observed by
SEM. Hwang et al. demonstrated moldability for PIMS using com-
mercially available silicone molds [179]. Nearly quantitative conver-
sion in the absence of solvent was crucial for replicating the mold
features with minimal change in dimensions. RAFT copolymeriza-
tion with a cross-linker provided a dense, homogeneous cross-
linking across the whole sample to avoid crack formation. Film
forms were also produced by using a glass plate assembly. Jeon
et al. showed free-standing films as large as 10 cm x 10 cm could
be readily prepared with a polyethylene fiber mat impregnated in
the polymerization mixture.

4.2. Suspension and emulsion polymerizations

Being virtually identical to the free radical polymerization sys-
tem except for the CTA, RAFT polymerization is compatible with
various polymerization methods, including bulk, solution, suspen-
sion, and emulsion polymerizations [189]. The versatility of RAFT
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polymerization has been exploited in the PIMS process to explore
the soft templating strategies offered by suspension and emul-
sion polymerizations. The key is to disperse the PIMS polymer-
ization mixture into an immiscible dispersion medium (or vice
versa if the polymerization mixture forms a continuous phase) by
proper interfacial engineering. Block polymer microspheres, mi-
crocapsules, and macroporous monoliths have been produced, re-
taining the nanoscopic bicontinuous morphology, and converted
into nanoporous materials by subsequent removal of the sacrificial
block (Fig. 16). Combining morphological control at the microm-
eter length scale with nanostructuring via PIMS offers a route to
robust hierarchically structured materials with structural integrity
and orthogonal length scale control.

Peterson et al. applied suspension polymerization to PIMS of
the PCL/styrene/DVB formulation with poly(vinyl alcohol) (PVA) as
a stabilizer in water. Suspension polymerization is suitable for the
scalable production of polymer microspheres [177]. Block polymer
beads were successfully produced by suspension polymerization.
Their size and distribution of the beads could be adjusted by the
stir rate, consistent with Hinze analysis [192]. Confocal Raman mi-
croscopy indicated the uniform distribution of PCL and polystyrenic
domains within the micrometer resolution, supporting the pres-
ence of the nanoscopic bicontinuous morphology. PCL removal in
the alkaline condition produced mesoporous polymer beads. Pore
characteristics evaluated by SAXS, nitrogen sorption analysis, and
SEM indicated the pore structure is virtually identical to that de-
rived from PIMS of the neat polymerization mixture. Functional-
izing the pore wall using the aforementioned middle block ap-
proach was also possible. Importantly, the pores were exposed on
the bead surface, indicating both domains are in contact with wa-
ter at the interface. The mesoporous beads could be prepared on
a 20-g scale. They are anticipated to be useful for heterogeneous
catalysis and separations [193-197].

PIMS within emulsions has been reported earlier by Oh et al.
[198]. The authors used a microfluidic technique to prepare wa-
ter/oil/water double emulsion drops with uniform sizes [199-
201]. The PIMS solution comprising PLA-CTA/styrene/DVB was
used as the thin middle oil phase, stabilized by PVA. Thermal
polymerization using AIBN as the initiator produced transparent
block polymer microcapsules suspended in water. The 3D con-
tinuous, densely cross-linked polystyrenic framework created by
PIMS maintained the integrity of the capsules without rupturing
upon drying. PLA etching derived mesopores percolating the en-
tire shell thickness (~ 1 pum thick) while retaining the microcap-
sule structure. Permeability study with dye-tagged dextrans indi-
cated size-selective permeability based on the relative pore size
to permeate. The cutoff threshold for permeation could be con-
trolled by the PLA molar mass in the hydrodynamic diameter range
of 5-30 nm, which was not attainable by previous macrophase
separation-based methods [202,203]. The permselective microcap-
sules are expected to be applicable as microreactors and sensing
platforms by combining high encapsulation efficiency with regu-
lated transport across the shell [204-206].

Park et al. prepared high internal phase emulsions (HIPEs) by
dispersing aqueous droplets in a thin, continuous oil phase of the
PLA-CTA/styrene/DVB solution under vigorous mixing [207]. Span
80 was added to the oil phase as a surfactant to stabilize the
emulsion. The final emulsion could contain 90 vol% of the aque-
ous “internal” phase (containing 20 mM CaCl,), occupying more
than 74% of the whole volume, dispersed in 10 vol% of the exter-
nal oil phase [208]. A sufficient amount of Span 80, far higher than
the critical micellar concentration, was vital to cover the continu-
ously generated interface promptly and form micelles to stabilize
the aqueous droplets further. Potassium persulfate added to the
aqueous phase initiated the RAFT polymerization at 70 °C and con-
verted the while soft solid into “polyHIPE,” a highly porous poly-
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mer monolith possessing interconnected macropores templated by
the aqueous droplets [209-212]. PLA removal afforded continuous
mesopores formed within the macroporous framework, support-
ing that the PIMS process successfully occurred within the con-
fined oil phase. Orthogonal control of macro- and mesopore sizes
was demonstrated. The meso- and macroporous monolith was fur-
ther subjected to hyper-cross-linking by reacting with FeCl; and
formaldehyde dimethyl acetal as an external cross-linker to create
micropores within the mesoporous P(S-co-DVB) framework [140].
The enhanced dye adsorption kinetics with high adsorption capac-
ity indicated that the micro-, meso-, and macropores are mutually
interconnected in this hierarchically porous material to provide a
short-cut path to the microporous surface.

4.3. Photopolymerization

RAFT photopolymerization is a promising methodology enabling
spatiotemporal control over polymerization [212]. While large-area
thermal polymerization is challenging in the PIMS process because
of the potential loss of volatile monomers during the relatively
long polymerization time at elevated temperatures, rapid conver-
sion can be achieved with photopolymerization even under am-
bient conditions, especially when acrylates and methacrylates are
used as the monomers. Recent applications of photo-PIMS in 3D
printing further allow to build nanostructured block polymer ma-
terials with complex shapes.

Oh and Seo reported the first application of the photoinitiated
RAFT polymerization in PIMS by developing an acrylate-based for-
mulation of PLA-CTA/isobornyl acrylate (IBA)/ethylene glycol di-
acrylate (EGDA) (Fig. 17a) [191]. IBA was chosen because of its
high T; close to PS (112 °C). 2,2-Dimethoxy-2-phenylacetophenone
(DMPA) was added as the photoradical initiator to generate radi-
cals under long UV while avoiding the CTA decomposition [213].
IBA was successfully photopolymerized in the presence of PLA-
CTA to produce PLA-b-PIBA. After confirming microphase separa-
tion of PLA-b-PIBA and selective degradation of PLA in the alka-
line condition, photo-PIMS was performed to yield a monolithic
product after 30 min of UV exposure at room temperature with
1,4-dioxane as a solvent (<40 wt% of the whole polymerization
mixture). The bicontinuous morphology formation, following the
PIMS mechanism, was confirmed by the SEM analysis (Fig. 17b).
SAXS data was also consistent with the PIMS mechanism. A free-
standing film with dimensions of 20 cm x 20 cm x 120 um could
be readily produced using the glass sandwich assembly in a UV
tape curing system (Fig. 17c). The alkaline treatment removed both
PLA and 1,4-dioxane to render the film mesoporous throughout the
film thickness with lateral shrinkage due to solvent removal.

Bobrin et al. explored photo-PIMS of the formula-
tion comprising  poly(n-butyl acrylate)(PnBA)-CTA/acrylic
acid(AA)/poly(ethylene glycol) diacrylate (PEGDA) in 3D print-
ing (Fig. 18a) [214,215]. A commercial digital light processing
printer was employed with diphenyl(2,4,6-trimethylbenzoyl) phos-
phine oxide as a photoradical initiator. 3D printed materials with
the bicontinuous morphology were successfully produced via the
PIMS process. Compared to the statistical copolymer of P(nBA-co-
AA-co-PEGDA), the PIMS materials showed enhanced toughness
and elongation at break owing to the interpenetrating soft PnBA
and hard P(AA-co-PEGDA) microdomains (Fig. 18c). Systematic
variation of the weight fraction and the molar mass of PnBA-CTA
indicated the well-defined, percolating PnBA domain is critical for
improved mechanical responses. However, increasing the PnBA
domain size too much seems detrimental as the reduced interfa-
cial area between the PnBA/P(AA-co-PEGDA) domains lowers the
stress dissipation efficiency (Fig. 18c). The domain size was also
tunable by adding PnBA homopolymer following the mechanism
discussed in Section 2.2. The PnBA homopolymer seems to exceed
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Fig. 17. Photo-PIMS for film fabrication [191], Copyright 2015. Adapted with permission from the American Chemical Society. (a) Schematic illustration of the photopoly-
merization setup. The PLA-CTA/IBA/EGDA formulation is given with DMPA as a photoradical initiator. (b) SEM image after PLA etching of the film. (c) A photo of the film

produced by the tape curing system (20 cm x 20 cm x 120 pm).

the solubility limit above 50 wt% loading and start to induce
macrophase separation, which makes the material more brittle
(Fig. 18d and e).

Interestingly, Shi et al. demonstrated that a phase-inverted mor-
phology of discrete P(AA-co-PEGDA) domains dispersed in the
PnBA matrix was found when multi-arm PnBA-CTAs were used,
suggesting a role of the macro-CTA architecture in the morpho-
logical evolution (Fig. 18f) [216]. The elongation at break and ten-
sile strength of the PIMS materials were primarily related to the
PnBA-CTA content. No significant difference was observed by the
macro-CTA architecture variation. Higher swellability both in water
and organic solvents and faster dye release kinetics were also at-
tributed to the well-segregated hydrophobic PnBA and hydrophilic
P(AA-co-PEGDA) domains (Fig. 18 g). The swelling-induced defor-
mation behavior demonstrates attractive opportunities for soft ma-
terials produced by PIMS.

Lee et al. further applied the 3D printing technique to the PEO-
CTA/IBA/trimethylolpropane triacrylate(TMPTA) formulation with
BMITFSI as an additive to fabricate solid polymer electrolytes
[217]. The resulting materials shared structural characteristics
with the polymer electrolyte membranes produced from the PEO-
CTA/styrene/DVB mixture with BMITFSI discussed earlier [158] and
also showed a similar structure-property relationship (Fig. 18h).
Replacing PEO-CTA with poly(oligoethylene glycol methyl ether
acrylate) (POEGMEA) with lower Tg increased ionic conductivity
[218]. The authors further demonstrated that the printed elec-
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trolyte could be used in the supercapacitor to successfully store
and release electricity (Fig. 18i).

5. Summary and outlook

PIMS has proven to be a powerful tool for the facile, scalable,
and moldable synthesis of nanostructured block polymer materials.
In the course of block polymerization in highly concentrated solu-
tions, the covalent junction between growing polymer blocks effec-
tively suppresses macrophase separation and restrains the charac-
teristic length scale to the radius of gyration of the forming block
polymer. Copolymerization with a cross-linker is a distinct benefit
of the PIMS process that enables to capture transient morpholo-
gies in situ. Specifically, the disordered bicontinuous morphology
can be reliably arrested within robust monolithic materials with
control over the length scale and provide synergetic combinations
of functions with mechanical attributes. The ease of the macro-CTA
synthesis makes the RAFT polymerization suitable for the PIMS
process, particularly combined with ring-opening transesterifica-
tion polymerization. High functional group tolerance and compat-
ibility with various polymerization methods (especially neat poly-
merization) of RAFT polymerization can be exploited in the PIMS
process to expand the polymer combinations and achievable prod-
uct forms.

There exists vast room for PIMS to advance further. Some obvi-
ous opportunities and challenges are proposed below:
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Beyond RAFT. The PIMS process requires that the controlled
polymerization proceeds in neat monomers or with minimal sol-
vent to keep the product’s monolithic character. While RAFT poly-
merization of liquid vinyl monomers meets the criterion well and
has been the only choice so far, adopting other polymerization
mechanisms in PIMS could drastically expand the possible polymer
combinations for the in situ nanostructuring. Nitroxide-mediated
polymerization is one apparent option particularly well suited to
the neat polymerization of styrenic and acrylate monomers in a
controlled manner. ATRP should also be applicable, and a reference
example demonstrated ATRP of styrene/DVB in the presence of
polychlorotrifluoroethylene-based graft copolymer containing PLA
side chains produces cross-linked materials that can be rendered
mesoporous by PLA removal [219]. Ring-opening metathesis poly-
merization can be another interesting candidate. We note that all
these polymerizations have been utilized for synthesizing macrop-
orous monolithic column materials following the PIPS mechanism
[40,42,220].

Access to ordered morphologies. In situ cross-linking by copoly-
merization with multivinyl monomers has been beneficial for ar-
resting the disordered bicontinuous morphology, which has been
one of the main assets of PIMS. However, ordered morphologies
can offer distinct advantages over the disordered version originat-
ing from the periodic nanostructure, such as photonic bandgaps,
which allow long-range wave propagation or frequency-selective
omnidirectional reflection, respectively [221]. While performing
PIMS with no or very small cross-linker loading could give ac-
cess to ordered phases, insufficient cross-linking density would
be detrimental to the structural integrity and homogeneity of the
PIMS product. As discussed in Section 2.2, increasing x between
the polymer blocks while ensuring the miscibility at the polymer-
monomer mixture would be the key to creating cross-linking sta-
bilized periodic nanostructures. Ordered network phases, includ-
ing gyroid, may be noteworthy targets for PIMS, particularly for
photonic applications, yet more challenging because of the narrow
phase window.

Multidomain structures. Using diblock macro-CTAs and a mixture
of two incompatible macro-CTAs demonstrated that the PIMS pro-
cess can create more than two domains. The diblock macro-CTAs
have proven their utility for tailoring the pore surface chemistries.
As a recent example illustrated, middle block engineering would
enable more sophisticated control over the environment of the
porous channel by adjusting the microphase separation behavior
and regulating the chain conformation after the sacrificial block re-
moval [177]. The middle block could also be useful for interface
engineering in nonporous systems, especially if different species
should travel through individual domains and meet at the inter-
face for a reaction.

Multiblock macro-CTAs would further increase the number of
domains responsible for various functions, allowing the utilization
of their interplay in the output as a response to external stimuli.
Because microphase separation of multiblock polymers can be very
complex [222], the block sequence and x would need to be very
carefully designed to achieve the target morphology. One-pot block
polymerization of multicomponent monomer mixtures, for exam-
ple, by utilizing the monomer reactivity differences [117] and frus-
trated Lewis pair polymerization [223], may be useful to this end
from the synthetic perspective.

Thin film fabrication. Free-standing nanoporous films have been
successfully fabricated via the PIMS process with a uniform pore
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structure throughout the whole thickness. Perhaps a more ideal
structure would be an asymmetric membrane consisting of the
PIMS-derived nanoporous thin layer on top of a highly macrop-
orous support membrane. The resulting thin film composite mem-
brane would combine the size selectivity of the thin layer and
the high flux provided by the support, as demonstrated in the
reverse osmosis membranes [224]|. However, PIMS is incompat-
ible with thin film fabrication techniques such as spin coat-
ing, as a typical PIMS formulation includes volatile monomers
that would evaporate quickly. Nonvolatile polymerization mix-
tures with appropriate viscosities would need to be developed,
processed into thin films, and polymerized in ambient condi-
tions without heating (photopolymerization, for example) to min-
imize the material loss and support deformation. We note that
other polymer-based methodologies for the bicontinuous struc-
ture formation, such as the randomly end-linked copolymer net-
work [83-87] and the cross-linking above the order-disorder tran-
sition temperature [106,225-228], may avoid the monomer evapo-
ration issue. Interfacial engineering to retain the bicontinuous mor-
phology on the surface of the thin film could be another chal-
lenge. Interestingly, direct etching of the PIMS materials with-
out additional treatment produces nanoporous polymers with
open pores on the surface, suggesting that the morphology is
reserved.

The possibilities for creating advanced multicomponent materi-
als via the PIMS process are fascinating. We hope this article will
catalyze new research in this exciting area, and we look forward to
the next set of scientific and technological advances.

Abbreviation: AA, Acrylic acid; BET, Brunauer-Emmett-
Teller; BJH, Barrett-Joyner-Halenda;  BMITFSI,  1-Butyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide; CTA,
Chain-transfer agent; CgmimNtf,, 1-Octyl-3-methylimidazolium
bis-(trifluoromethyl sulfonyl)imide; C;;mimNtf,, 1-Dodecyl-3-
methylimidazolium  bis(trifluoromethyl  sulfonyl)imide; DMA,
N,N-dimethylacrylamide; DSC, Differential scanning calorime-

try; DVB, Divinylbenzene; EGDA: Ethylene glycol diacry-
late;, EGDMA, Ethylene glycol dimethacrylate; HEIMTFSI, 1-
Ethylimidazolium bis(trifluoromethylsulfonyl)imide; HIPE, High

internal phase emulsion; HPP, Hierarchically porous polymer; IBA,
Isobornyl acrylate; IEC, lon exchange capacity; LiTFSI, Lithium
bis(trifluoromethylsulfonyl)imide; MMA, Methyl methacrylate;
MVCL, Multivinyl cross-linker; mVSZ, Modified vinylsilazane;
NLDFT, Nonlinear density functional theory; PB, Polybutadiene;
PCL, Poly(e-caprolactone); PDMS, Polydimethylsiloxane; PEO,
Poly(ethylene oxide); PI, Polyisoprene; PIPS, Polymerization-
induced phase separation; PISA, Polymerization-induced self-
assembly; PLA, Polylactide; PnBA, Poly(n-butyl acrylate); POEG-
MEA, poly(oligoethylene glycol methyl ether acrylate); PoSSE,
Poly(n-octyl styrene sulfonic ester); PtBA, Poly(tert-butyl acrylate);
PVA, Poly(vinyl alcohol); PAMCL, Poly(y-methyl-¢-caprolactone);
QSDFT, Quenched solid density functional theory; RAFT, Reversible
addition-fragmentation chain transfer; ROTEP, Ring-opening trans-
esterification polymerization; S, Styrene; SANS, Small-angle neu-
tron scattering; SAXS, Small-angle X-ray scattering; SEM, Scanning
electron microscopy; SN, Succinonitrile; tBuS, tert-Butylstyrene;
TEM, Transmission electron microscopy; Tg, Glass transition tem-
perature; TGA, Thermogravimetric analysis; TMPTA, Trimethylol-
propane triacrylate; TMSS, Trimethylsilylstyrene; TP, 2,3,6,7,10,11-
Hexakis(4-vinylphenyl)triphenylene; VBP, 4-Vinylbiphenyl; VBzCl,
4-Vinylbenzyl chloride; 2VN, 2-Vinylnapthalene; 3VBP, 1,3,5-Tris(4-

morphology with multi-arm PnBA-CTAs. (g) Swelling-induced shape change of the material produced by combining PIMS and non-PIMS materials. (h) 3D printed solid
polymer electrolyte following the shape of Australia. The PEO-CTA/IBA/TMPTA combination was used with BMITFSI as an additive. (i) Demonstration of turning LED off and
on in the supercapacitor setup. (a-e) [214], Copyright 2022. Adapted with permission from John Wiley & Sons Inc. [215], Copyright 2022, Adapted with permission from
Springer Nature. (f-g) [216], Copyright 2022. Adapted with permission from John Wiley & Sons Inc. (h-i) [217], Copyright 2022, Adpated with permission from John Wiley &

Sons Inc.
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vinylphenyl) benzene; 4VBM, Tetrakis(4-vinylbiphenyl)methane;
4VP, 4-Vinylpyridine.
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