ALL ABOUT _ PATENT _{유·익·한·특·허·상·식}

Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술 개발

이흥재 | 특허청 반도체소재심사과

개 요

본 특허동향 요약서는 Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술의 특허 동향을 분석함으로써 우리나라의 기술 수준, 선진 기업의 연구개발 동향 및 핵심 특허 현황 등을 파악하여, 전략적인 연구개발 계획 수립에 활용할 수 있도록 객관적이고 체계적인 특허 정보를 제공하고자, 특허청이 발주하고 한국지식재산전략원이 주관한 특허 동향 조사 보고서의 내용 중 출원 동향에 대한 부분을 발췌한 것으로 전문은 e-특허나라 홈페이지 (https://biz.kista.re.kr/patentmap/)에서 보실 수 있음.

특허 동향분석

1. 분석 배경

- Short-Term Exposure Limit(STEL: 단시간 노출 한계) 검출감도 기반의 유해화학물질 자극감응형 변색소재 및 디바이스-프리 코팅 적용기술 개발의 사업 추진을 위해서 해당 기술 분야에 대한 현재 기술수준, 기술개발동향, 시장 및 산업동향 조사 등 사전 특허·기술 동향을 파악함으로써 R&D 방향성 검토를 지원함.

2. 분석 목적

- 본 보고서에서는 Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색소재 및 디바이스-프리 코팅 적용기술을 개발함에 있어, 유해화학물질 감응형 변색소재에 대하여 특허동향분석을 실시함.
- 이를 통하여 국제 특허현황 및 국가별 기술경쟁력 등의 분석을 실시하고, 최근 부상기술 등을 도출하여, 전략적인 연구개발 계획 수립에 활용할 수 있도록 함으로써, 중복연구를 방지하고, 본 연구개발과제 수행의 타당성에 대한 객관적인 특허정보를 제공하기 위함.

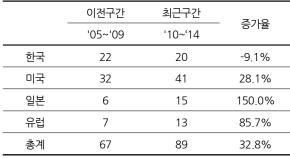
표 1. 분석대상 기술분류기준

대분류	중분류 검색개요 (기술범위)				
Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술		유해화학물질에 대한 감응이 가능한 소재의 조성이나 물성, 합성, 제조 방법에 관련 기술			
	소재 응용 관련 기술 (AB)	유해화학물질에 대한 감응이 가능한 소재의 응용 즉, 캡슐화 또는 도료화에 관련 기술			

		유효데이터 건수						
대분류	중분류	한국 KIPO	미국 USPTO	일본 JPO	유럽 EPO	계		
Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형	소재 관련 기술 (AA)	23	31	20	20	94		
ㅠ에와엑물을 시극심증영 변색 소재 및 디바이스-프리 코팅 적용 기술	소재 응용 관련 기술 (AB)	27	99	28	30	184		
 소 계		50	130	48	50	278		
 총 계	50	130	48	50	278			

표 2. Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술 개발 기술의 유효특허 선별 결과

3. 국가별 Landscape


3.1 출원 증가율 분석

- 유해화학물질의 유출 및 폭발 등 대형사고의 사전 방지를 위해서는 미세농도 범위의 유해화학물질에 대한 단시간 내 즉각적인 디바이스-프리 초기 육안검출 기술이 필요함
- 이러한 기술 개발 필요성에 따라 최근과 이전구간 대비 출원 증가율도 전반적으로 모든 출원국에서 이전구간 대비 최근에 증가율이 증가하고 있으며, 특히 일본과 유럽에서 큰 폭으로 증가한 것을 알 수 있지만, 한국은 소폭으로 감소하고 있는데, 이는 2010년에 나타난 감소

 경향에 따른 것으로 2011년부터 2014년에는 이전구간 대비 증가하고 있음.

3.2 최근 출원 점유율 분석

- 전체구간대비 최근구간에서의 출원점유율을 살펴봄 으로써 각 기술요소별 최근 가장 부상하는 기술에 대해 살펴볼 수 있음.
- 앞서 언급된 것과 같이 유해화학물질의 유출 및 폭발 등 대형사고의 사전 방지를 위해서는 미세농도 범위의 유해화학물질에 대한 단시간 내 즉각적인 디바이스-프리 초기 육안검출 기술 개발이 요구되고 있음.
- 이러한 기술 개발의 요구에 맞춰 다양한 유해화학물질을

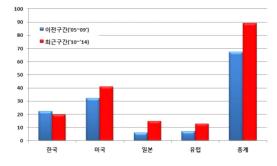


그림 1. 출원 증가율.

_	최근구간	전체구간	점유율	
	'10~'14	'95~'14	台市哲	
소재 관련 기술 (AA)	50	94	53.2%	
소재 응용 관련 기술 (AB)	39	184	21.2%	
총계	89	278	32.0%	

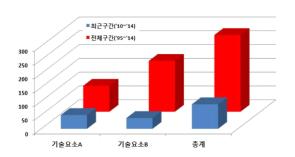


그림 2. Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술의 구간별점유율 분석.

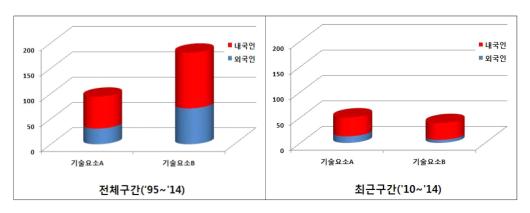


그림 3. 외국인의 점유율 변화.

정확하게 검출할 수 있는 소재 관련 기술과 이러한 소재를 응용하는 기술이 함께 개발됨에 따라 최근 점유율이 높은 것으로 나타났음.

3.3 특허 시장확보력 분석

- 해당국의 내외국인 출원점유율 변화를 살펴봄으로써, 최근구간에 외국인 출원점유율 변화를 통해 시장확보력과 연구개발과제의 시장매력도를 살펴볼 수 있음
- 기술요소A의 경우, 전체구간을 참조하면, 외국인 출원의 건수는 내국인 출원의 건수보다 다소 적은 것으로 나타났으며, 이는 최근 구간에는 내국인의 출원이 좀 더 많은 것을 알 수 있음.
- 기술요소B의 경우, 전체구간을 참조하면, 외국인 출원의 건수는 내국인 출원의 건수보다 다소 적은 것으로

- 나타났으며, 이는 최근 구간에는 내국인의 출원이 좀 더 많은 것을 알 수 있음.
- 따라서, 기술요소A와 기술요소B는 외국인의 출원 동향이 전체구간 대비 최근구간에도 큰 변화가 없는 것으로 보이며, 이를 통해 시장확보력과 시장매력도는 큰 변화가 없는 것을 알 수 있음.

4. 경쟁자 Landscape

- Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술 개발 과제의 주요 출원인 Top20을 추출한 결과, 미국의 Applied Nanotech Holdings, Inc社가 가장 많은 특허를 출원하였고, 주요 출원국으로는 자국인

표 3. 경쟁자 Landscape

분석 항목	출원인 - 국적	주요 IP시장국(건수,%)				IDAIZI	트뤼츠이 즈기오	
출원인		한국 KIPO	미국 USPTO	일본 JPO	유럽 EPO	IP시장국 종합*	특허출원 증가율 (최근 5년)	주력 기술 분야
Applied Nanotech Holdings, Inc	US	5 (22.7%)	10 (45.5%)	3 (13.6%)	4 (18.2%)	미국	-100.0%	소재 응용 관련 기술(AB)
Solulink Biosciences, Inc.	US	0 (0.0%)	11 (84.6%)	0 (0.0%)	2 (15.4%)	미국	1100.0%	소재 관련 기술(AA)
3M	US	0 (0.0%)	4 (40.0%)	3 (30.0%)	3 (30.0%)	미국	-88.9%	소재 응용 관련 기술(AB)
SAKURA COLOR PRODUCTS CORP	JP	0 (0.0%)	6 (66.7%)	3 (33.3%)	0 (0.0%)	미국	-	소재 응용 관련 기술(AB)
METALLOGENICS CO LTD	JP	1 (11.1%)	2 (22.2%)	3 (33.3%)	3 (33.3%)	일본 유럽	-	소재 관련 기술(AA)
MIDWEST RESEARCH INSTITUTE	US	0 (0.0%)	5 (62.5%)	0 (0.0%)	3 (37.5%)	미국	-	소재 응용 관련 기술(AB)
AIST	JP	0 (0.0%)	0 (0.0%)	7 (100%)	0 (0.0%)	일본	-	소재 관련 기술(AA)
University of Central Florida Research Foundation, Inc.	US	1 (16.7%)	4 (66.7%)	1 (16.7%)	0 (0.0%)	미국	400.0%	소재 응용 관련 기술(AB)

분석 항목	주요 IP시장국(건수,%)			ID LIZEZ	F=1201 Z=10			
출원인	출원인 국적	한국 KIPO	미국 USPTO	일본 JPO	유럽 EPO	· IP시장국 종합*	특허출원 증가율 (최근 5년)	주력 기술 분야
Japan Pionics Co Ltd	JP	1 (16.7%)	1 (16.7%)	3 (50.0%)	1 (16.7%)	일본	-	소재 응용 관련 기술(AB)
고려대학교 산학협력단	KR	6 (100%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	한국	-	소재 관련 기술(AA)
ARKRAY, Inc.	JP	2 (33.3%)	2 (33.3%)	0 (0.0%)	2 (33.3%)	한국 미국 유럽	-100.0%	소재 관련 기술(AA)
Alliance for Sustainable Energy, LLC	US	0 (0.0%)	3 (60.0%)	0 (0.0%)	2 (40.0%)	미국	-100.0%	소재 응용 관련 기술(AB)
PHOTON-X, INC	US	0 (0.0%)	3 (60.0%)	1 (20.0%)	1 (20.0%)	미국	-	소재 응용 관련 기술(AB)
NASA	US	0 (0.0%)	5 (100%)	0 (0.0%)	0 (0.0%)	미국	50.0%	소재 응용 관련 기술(AB)
서울대학교 산학협력단	KR	4 (80.0%)	1 (20.0%)	0 (0.0%)	0 (0.0%)	한국	-33.3%	소재 응용 관련 기술(AB)
ATERIS TECHNOLOGIES, LLC	US	1 (25.0%)	1 (25.0%)	1 (25.0%)	1 (25.0%)	한국 미국 일본 유럽	-100.0%	소재 응용 관련 기술(AB)
Biomedical Sensors, Ltd.	GB	1 (25.0%)	1 (25.0%)	1 (25.0%)	1 (25.0%)	한국 미국 일본 유럽	-	소재 응용 관련 기술(AB)
Clarkson University	US	0 (0.0%)	3 (75.0%)	0 (0.0%)	1 (25.0%)	미국	-	소재 응용 관련 기술(AB)
DAIKIN IND LTD	JP	1 (25.0%)	1 (25.0%)	1 (25.0%)	1 (25.0%)	한국 미국 일본 유럽	-100.0%	소재 응용 관련 기술(AB)
Robert Bosch GmbH	DE	0 (0.0%)	2 (50.0%)	0 (0.0%)	2 (50.0%)	미국 유럽	-	소재 응용 관련 기술(AB)

- * 해당 출원인의 출원수 중 주요 출원국가의 출원비중 중 10% 이상인 국가(대분류 대상 상위 20개 출원인)
 - 미국(45.5%)인 것으로 나타났음. 또한, 미국의 Solulink Biosciences, Inc社, 3M社가 뒤를 이어 본 기술의 다수 출원인으로 랭크되었음.
 - 이들 주요 출원인들의 주요 시장국과 최근 연구활동 및 기술력, 주력 기술분야의 파악을 위하여, 주요 시장국별 출원건수, 최근 5년간의 특허출원 증가율을 비교분석한 결과, 미국의 Solulink Biosciences, Inc社가 1100% 증가율을 보이고, 자국인 미국에 집중적으로 출원하고 있으며, 유럽에도 적지 않은 수의 출원이 이루어지고 있는 것으로 보임.
- 또한 다수의 주요 출원인들은 자국에 출원을 우선적으로 한 후 해외에 진출하고 있는 것을 볼 수 있는데 이는, 자국의 기술 선점을 우선시하고 있는 분야이기 때문으로 판단됨.
- 주요 출원인의 주력분야를 살펴보면 미국의 Solulink Biosciences, Inc社와 일본의 METALLOGENICS CO LTD社, AIST와 한국의 고려대학교 산학협력단, 일본의 ARKRAY, Inc社를 제외하고는 소재 관련 기술(AA)에 집중하여 주력하고 있는 것으로 나타남.

결론 및 시사점

- Short-Term Exposure Limit(STEL) 검출감도 기반의 유해화학물질 자극감응형 변색 소재 및 디바이스-프리 코팅 적용 기술 분야의 특허분석결과, 우리나라는 고려대학교, 서울대학교 산학협력단 등에서 이 분야에 대한 특허가 나오고 있으나, 전반적으로 미국, 일본, 유럽에 비해 특허 출원 및 기술 경쟁력이 다소 떨어진다고 보임.
- 우리나라가 이 기술 분야를 선도할 핵심 기술을 확보할 수 있도록 적극적인 관심과 연구 투자에 많은 관심을 갖길 기대해 봄.